
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SOFTWARE FAULT TREE ANALYSIS
OF AN AUTOMATED CONTROL SYSTEM DEVICE

WRITTEN IN ADA

by

Mathias W. Winter

September 1995

19960129 055
Thesis Advisor: Timothy J. Shimeall

Approved for public release; distribution is unlimited.

tXL'lL
*i^mj?£jgQ g

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

. AGENCY USE ONLY (Leave Blank) I 2. REPORT DATE
September 1995

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

SOFTWARE FAULT TREE ANALYSIS OF AN AUTOMATED
CONTROL SYSTEM DEVICE WRITTEN IN ADA

6. AUTHOR(S)

Winter, Mathias W.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES ^_——.

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Software Fault Tree Analysis (SFTA) is a technique used to analyze software for faults that could lead to hazardous

conditions in systems which contain software components. Previous thesis works have developed three Ada-based, semi-
automated software analysis tools, the Automated Code Translation Tool (ACTT) an Ada statement template generator, the

Fault Tree Editor (FIE) a graphical fault tree editor, and the Fault Isolator (FI) an automated software fault tree isolator. These
previous works did not apply their tools on a real system. Therefore, the question addressed by this thesis is "Do these tools
actually work on a real-world software control system?"

This thesis developed and implemented a sample Software System Analysis Methodology (SSAM) using these semi-

automated software tools. The research applied this methodology to a real-world distributed control system written in Ada. The
Missile Engagement Simulation Arena's (MESA) control software was developed by the Naval Air Warfare Center, Weapons
Division, China Lake, CA.

The SSAM was used to show that the analysis of the Sphere-HWCI control module's 74,000 lines of code could be
thoroughly analyzed in less than 100 man-hours. This practical, 740 lines-of-code per hour rate was a direct result of the
incorporation of the semi-automated tools into the process.

14. SUBJECT TERMS

Software Safety, Software Fault Tree Analysis, Software Safety Methods

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

111
STRTCTTSBE"

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

SOFTWARE FAULT TREE ANALYSIS
OF AN AUTOMATED CONTROL SYSTEM DEVICE

WRITTEN IN ADA

Mathias William Winter
Lieutenant Commander, United States Navy

B.S., University of Notre Dame, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCffiNCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

Author:

Approved By:

l^L/^//i
Mathias W. Winter

Timothy J. Shimeall, Thesis Advisor

1 L
LtCol David A. Gaitros, Second Reader

k^ V, /s O^Cu.
sd Lewis, Chairman,

Department of Computer Science

m

IV

ABSTRACT

Software Fault Tree Analysis (SFTA) is a technique used to analyze software for faults

that could lead to hazardous conditions in systems which contain software components.

Previous thesis works have developed three Ada-based, semi-automated software analysis

tools, the Automated Code Translation Tool (ACTT) an Ada statement template generator,

the Fault Tree Editor (FTE) a graphical fault tree editor, and the Fault Isolator (FI) an

automated software fault tree isolator. These previous works did not apply their tools on a

real system. Therefore, the question addressed by this thesis is "Do these tools actually

work on a real-world software control system?"

This thesis developed and implemented a sample Software System Analysis

Methodology (SSAM) using these semi-automated software tools. The research applied

this methodology to a real-world distributed control system written in Ada. The Missile

Engagement Simulation Arena's (MESA) control software was developed by the Naval Air

Warfare Center, Weapons Division, China Lake, CA.

The SSAM was used to show that the analysis of the Sphere-HWCI control module's

74,000 lines of code could be thoroughly analyzed in less than 100 man-hours. This

practical, 740 lines-of-code per hour rate was a direct result of the incorporation of the

semi-automated tools into the process.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. SOFTWARE SAFETY 1

B. SOFTWARE DEFECTS 3

1. Faults 3

2. Errors 4

3. Failures 4

4. Software Defect Examples 5

C. SOFTWARE ANALYSIS TECHNIQUES AND TOOLS 6

1. Hazard Identification and Analysis 7

a. Fault Tree Analysis 8

b. Failure Modes and Effects Analysis 9

c. PetriNets 10

d. Statecharts Analysis 11

e. Others 11

D. THESIS PROJECT APPLICATION 12

1. MESA Overview 12

2. MESA System Overview 13

E. PROBLEM STATEMENT 15

F. SUMMARY OF CHAPTERS 15

1. II. Fault Tree Analysis Process 15

2. III. Software System Analysis Methodology 16

3. IV. Methodology Implementation Results 16

4. V. Conclusions 16

H. FAULT TREE ANALYSIS 17

A. SOFTWARE FAULT TREE ANALYSIS 19

HI. SOFTWARE SYSTEM ANALYSIS METHODOLOGY 21

Vll

A. STEP 1: CONCEPT EXPLORATION AND SYSTEM RESEARCH 21

B. STEP 2: HAZARD IDENTIFICATION . 22

1. Delphi Technique 22

2. Brainstorming 23

3. Program Management Input 23

C. STEP 3: PRELIMINARY HAZARD ANALYSIS 23

D. STEP 4: HAZARD ANALYSIS 24

1. Step 4.a: Failure Modes Effect Analysis 25

2. Step 4.b: Specific Hazard Fault Tree Generation 26

3. Step 4.c: Software Fault Tree Analysis 26

a. Step 4.C.1: ACTT 26

b. Step 4.C.2: FTE/FI 28

4. Step 4.d: Results Analysis 29

E. METHODOLOGY SUMMARY 30

IV. METHODOLOGY IMPLEMENTATION RESULTS 31

A. CONCEPT EXPLORATION AND SYSTEM RESEARCH 31

B. HAZARD IDENTIFICATION 32

C. PRELIMINARY HAZARD ANALYSIS 32

D HAZARDS ANALYSIS 33

1. FMEA. 34

2. Specific Hazard Fault Tree Generation 34

3. Software Fault Tree Analysis 37

a. ACTT 39

b. FI Pruning 40

c. Results Analysis 41

E. EFFORT EXPENDED „44

V. CONCLUSIONS 47

A. CONCLUSIONS 47

Vlll

B. RECOMMENDATIONS AND FUTURE WORK 47

APPENDIX A. SOFTWARE FAULT TREE SYMBOLOGY 49

APPENDIX B. MESA CONTROL CSCIPHA RESULTS 51

APPENDIX C. GENERATED FAULT TREES AND FAULT DESCRIPTION LIST-

INGS 59

LIST OF REFERENCES 91

INITIAL DISTRIBUTION LIST 93

IX

LIST OF FIGURES

Figure 1: Software Defect Relationships 5
Figure 2: Missile Engagement Simulation Arena (MESA) 12
Figure 3: MESA System Structure. 13
Figure 4: Calibration Sphere Hardware Diagram 14
Figure 5: AND Gate 18
Figure 6: OR Gate 18
Figure 7: Example ACTT Output File27
Figure 8: Fault Isolator Tool Main Menu.... 28
Figure 9: Fault Tree Editor Example Display 29
Figure 10: Sphere Impacts Arena Specific Hazard Fault Tree 35
Figure 11: Sphere Impacts Object Other Than Arena Specific Hazard Fault Tree 36
Figure 12: Encoder Line Breaks Causal-Link Analysis Diagram 42
Figure 13: Encoder Line Breaks Software Node Sub-Tree 43
Figure 14: Software Fault Tree Symbols 49
Figure 15: Data Error Fault Tree 62
Figure 16: Check Error Fault Tree 62
Figure 17: Algorithm Error Fault Tree 64
Figure 18: Encoder Line Break Error Fault Tree 66
Figure 19: Encoder Line Tracking Error Fault Tree 68
Figure 20: Evaluate Sub-Tree Level One 70
Figure 21: Evaluate Sub-Tree Level Two 75
Figure 22: Evaluate Sub-Tree Level Three 78
Figure 23: Brk Ecdr Root Sub-Tree , 80
Figure 24: Brk Ecdr Node 194 Sub-Tree 83
Figure 25: Brk Ecdr Node 179 Sub-Tree 85
Figure 26: Brk Ecdr Node 46 Sub-Tree 88

XI

XU

LIST OF TABLES

Table 1: Example PHA of MESA Software Development Plan 24
Table 2: Example FMEA of MESA Control CSCI 25
Table 3: Software System Analysis Methodology Summary 30
Table 4: Results of PHA on MESA Sphere HWCI 33
Table 5: Results of FMEA on MESA Sphere HWCI 34
Table 6: Software Root Node Mapping to Sphere Source Code Files 37
Table 7: Sphere Code Procedures of Interest Mapping to Software Root Node 38
Table 8: Number of ACTT Generated Fault Tree Nodes Per Source Code File.... 40
Table 9: Comparison Original vs. Pruned Software Root Node Fault Tree Size... 41
Table 10: PHA on Software Development Plan 51
Table 11: PHA on Software Requirements Specification 52
Table 12: Sphere Impacts Arena Fault Description Listing 60
Table 13: Sphere Impacts Object Other Than Arena Fault Description Listing 61
Table 14: Data Error Fault Description Listing 63
Table 15: Check Error Fault Description Listing 63
Table 16: Algorithm Error Fault Description Listing 65
Table 17: Encoder Line Break Error Fault Description Listing 67
Table 18: Encoder Line Tracking Error Fault Description Listing 69
Table 19: Evaluate Sub-Tree Level One Fault Description Listing 71
Table 20: Evaluate Sub-Tree Level Two Fault Description Listing 76
Table 21: Evaluate Sub-Tree Level Three Fault Description Listing 79
Table 22: Brk Ecdr Root Sub-Tree Fault Description Listing 81
Table 23: Brk Ecdr Node 194 Sub-Tree Fault Description Listing 84
Table 24: Brk Ecdr Node 179 Sub-Tree Fault Description Listing 86
Table 25: Brk Ecdr Node 46 Sub-Tree Fault Description Listing 89

Xlll

XIV

ACKNOWLEDGMENTS

First, I would like to thank Dr. Timothy Shimeall, my thesis advisor, for providing me

with an excellent environment in which to conduct my research. His calm demeanor and

academic acumen made him an excellent technical advisor and working mentor. His

genuine interest and sincere appreciation for my work allowed this past year to be an

enjoyable and worthwhile experience for me.

Second, I would like to thank LtCol David Gaitros for being gracious enough to be my

second reader. Our talks on subjects ranging from software to flying provided me with

much needed insight and motivation to accomplish my work.

Next, I would like to extend my deep appreciation and gratitude to the MESA project

personnel at China Lake, CA. Specifically, I want to thank Mr. Bob Westbrook for his

liaison help that directed me towards the MESA project, Mr. Ken Wetzel for his astute

observations and invaluable insights on the analysis data and Mr. Tom Roseman for his

software engineering expertise and guidance throughout the entire period of my work.

Last, but by no means least, I want to thank my wife, Joanne, and daughter, Angela

for their steadfast support and unwavering dedication during this long "at-sea" shore-duty

assignment. Without their love and devotion, none of this would have been possible.

XV

XVI

I. INTRODUCTION

Computers are part of everyday life. From the complex systems found in the Space

Shuttle to the Fisher Price Alphabet computer two-year-old children play with in the home.

This wide spectrum of computer usage is evidence that we have become a computer-

technology-dependent society. As this dependency has increased, more and more safety

critical systems have become automated. This automation, relying heavily upon software

control systems, increases productivity and efficiency but also greatly increases the

possibility of catastrophic consequences in the event of system failures. Safety critical

systems are those that manage processes that can directly impact human lives and/or

expensive equipment and property. System failures directly relate into serious and usually

unacceptable human and property losses. The degree of these losses depend greatly on the

type of system involved. To reduce these losses, it is imperative that control systems

conform to a standardized evaluation to ensure its reliability, dependability and safety. The

development of useful methods to detect, isolate and eliminate the causes of these high risk

failures is crucial in demonstrating the reliability and dependability of current and future

safety critical software control systems.

Hardware failures and defects are well understood and documented. Through the

history of the industrial age, the science of hardware failure analysis and its concepts,

causes and effects have been exhaustively evaluated and quantified. The same cannot be

said about the concepts, causes and effects of software induced failures. The need for

standardized software safety analysis principles and techniques is undeniable. This thesis

examines the requirement for and development of a practical and effective software safety

analysis methodology for safety-critical software systems.

A. SOFTWARE SAFETY

Safety has been defined as "freedom from those conditions that can cause death,

injury, occupational illness, or damage to or loss of equipment or property [Ref. 1]." A

definition for software safety can then be given as, "freedom from software-caused death,

injury, damage to or loss of equipment or property [Ref. 2]." Mishap, hazard, accident and

risk are related concepts to safety that must be defined to understand the requirement for

software safety. A mishap is an unplanned event or series of events that result in death,

injury, occupational illness, damage to or loss of equipment or property, or environmental

harm. Hazard and accident are usually used interchangeably. A hazard refers to the state or

states of a system that when combined with certain environmental conditions could lead to

a mishap, where accident is defined as an unwanted and unexpected release of energy. Risk

is defined as a function of the probability of a hazardous state occurring, the probability of

the hazard leading to a mishap, and the perceived severity of the worst potential mishap that

could result from the hazard [Ref. 1]. With these stated definitions, it is no surprise that

software safety has become a major concern in today's safety critical control systems.

Project managers cannot afford to take the risk of minimizing the importance of software

safety in these critical systems. Though acceptable levels of software safety have been

achieved, at current technology levels, no system can be guaranteed free from defects. With

this inevitable human-induced limitation, software safety then involves ensuring that the

system will execute within a given context without resulting in unacceptable risk.

Methodologies have been developed to reduce risk to an acceptable level while increasing

system safety. This is achieved by identifying potential hazards early in the development

process and then establishing requirements and design features to eliminate or control these

hazards [Ref. 1].

When discussing safety, the concept of reliability emerges. Though related, these two

concepts are not the same. Reliability is defined as the probability that a system performs

its assigned function under specified environmental conditions for a given period of time.

Extended to software, the definition becomes the probability that a software system fulfils

its assigned task in a given environment for a predefined number of input cases, assuming

the input cases are free of errors [Ref. 3]. Therefore, it can be said that reliability

requirements are concerned with making a system failure-free, where safety requirements

are concerned with making it mishap-free [Ref. 1].

B. SOFTWARE DEFECTS

The American Heritage Dictionary defines defect as "an imperfection, failing or fault."

As related to software, a standard definition of software defects can then be those faults,

errors or failures contained in a software system [Ref. 4]. Understanding the nature and

interrelationships of these defects is essential when conducting any type of software safety

analysis.

1. Faults

Faults are those defects in a component or design which ultimately are responsible for

a failure. Some causes include design errors, electromagnetic interference, unanticipated

inputs and system misuse [Ref. 5]. Faults exhibit different classifiable properties such as

duration, nature and extent. The duration of a fault can be transient, intermittent or

permanent. The nature of a fault is determined by its behavior in the system. It can either

be logical, producing logical values, or indeterminate, having no logical equivalent. The

extent of faults determines the level of the fault, either local or global. Faults originate in

the system's environment or from the interaction between the system and a user (process).

Faults usually have one of several effects [Ref. 4]:

• Disappear with no perceptible effect

• Remain in place with no perceptible effect

• Lead to a sequence of additional faults that result in a failure in the system's
operation (propagation to failure)

• Lead to a sequence of additional faults with no perceptible effect on the system
(undetected propagation)

• Lead to a sequence of additional faults that have a perceptible effect on the system
but do not result in a failure of the system's operation (detected propagation
without failure)

2. Errors

The term error is sometimes interchanged with fault, however, there is a distinct

difference. In the context of system states, an error is considered to be part of an erroneous

state that constitutes a difference from a valid state. When a system is in an invalid state,

an external state analysis of the system can determine the states that would need to be

changed to make the internal state of the system valid. This internal state can be valid

within itself but incompatible with its surrounding environment. This can occur when a

design failure is introduced in a component or through the interaction of a component in a

valid state with one in an invalid state. An undesirable effect is the propagation of errors

through the system changing valid components to erroneous ones. This property tends to

portray errors in a transitive nature, linking the presence of faults with the failure of the

system [Ref. 6].

3. Failures

Every system is designed according to some specification. This specification defines

the required operations and functions that the system is to perform. When the behavior of

the system first deviates from this required specification, a failure has occurred [Ref. 6].

This definition of failure assumes the given specification is free from "errors" which could

eventually lead to a failure. This assumption is necessary to be able to derive a coherent,

functional definition of a failure. The specification does not, however, provide any insight

to what behavior can be expected in the event of failures. This can be a problem when trying

to design software that detects and copes with failures. Classifying failure behavior uses a

modeling method that qualifies the disruptive nature of the failures. This is useful when not

all failures are of equal consequence. These classifications of failures are as follows:

• Fail-Safe - Procedures that attempt to limit the amount of damage caused by a
failure. No attempt is made to satisfy the functional specifications except where
safety is concerned.

• Fail-Operational - Provides for full system functionality in the presence and
migration of faults.

• Fail Soft - Provides continued system operation but at a degraded performance or

reduced functionality level until the fault is removed or the run-time conditions
change [Ref. 1].

Using these classes of failures, it is possible to augment existing reliability techniques

that attempt to eliminate all failures with techniques that concentrate on the high-cost

failures. This effort can then ensure that these particular failures do not occur or at least

their probability is minimized. Figure 1 summarizes the interrelationship between faults,

errors and failures.

f 'S
Fault

I J
(\

Error

I J
(\

Failure

I J

Figure 1: Software Defect Relationships

4. Software Defect Examples

It is a well-known fact that software by itself cannot directly injury, maim or cause

destruction. However, it is the interaction of this software with hardware that can produce

catastrophic events [Ref. 1]. Computers are increasingly used to monitor and control safety

critical systems. Real-time software controls aircraft, shuts down nuclear power reactors in

emergencies, keeps telephone networks running, and monitors hospital patients. The use of

computers in such systems offers considerable benefits, but also poses serious risks to life

and the environment. The following list of defective software-induced accidents and

hazards is presented to expose some of these risks and to demonstrate the critical

justification for complete and comprehensive software safety analysis methodologies.

• Therac-25 Radiation Therapy Machine. A man was exposed to fatal radiation level
treatments due to a software modification of the control software, resulting in one
human death and the manufacturer going out of business [Ref. 7].

• A French meteorological satellite computer was supposed to issue a read
instruction to some high-altitude weather balloons but instead ordered an
"emergency self-destruct," resulting in 72 of 141 weather balloons destroyed [Ref.
1].

• An air-to-air missile loaded on the wing of an F/A-18 jet fighter failed to separate
from the launcher because a computer program signaled the missile retaining
mechanism to close before the rocket had built up sufficient thrust to clear the
missile from the wing. The aircraft went violently out of control resulting in loss
of the aircraft [Ref. 1],

C. SOFTWARE ANALYSIS TECHNIQUES AND TOOLS

Software safety analysis and verification is required by contractors of safety critical

systems. At least three Department of Defense standards include related tasks; one general

safety standard [MIL-STD-882C 1993] includes tasks for software hazard analysis and

verification of software safety; an Air Force standard for missile weapon systems [MIL-

STD-1574A 1979] requires a complete and integrated software safety analysis; and the U.S

Navy has a standard for nuclear weapons systems [MIL-STD-SNS 1986] that requires

software nuclear safety analysis [Ref. 1]. Currently, a major restructuring effort of all

military standards is underway. The outcome of this is unsure. However, it is almost certain

that the number of military standards will decrease, consolidating numerous current safety

standards.

Various software safety analysis techniques have been developed to aid in this required

verification. A few of these techniques have been tested and used extensively, while others

are still being developed. From these techniques have come standardized methods and

procedures to achieve the required results. This procedural characteristic has led to the

automation of some of these techniques.

The explosion of safety-critical software systems has put an enormous burden upon

software engineers and analysts to produce "failure free" systems. This requirement alone

increases the complexity and work load required to produce such systems. Manual

methods, even with large software teams, can no longer provide the required effort subject

to ever decreasing time and budget constraints. Today's software engineers and analysts

must use automated tools to help in the process. Early automated tools were very specific

in their use and were met with skepticism due to their unreliable nature and poorly proven

track records. As more time, effort and resources were dedicated to the development of

these tools, the concept of Computer Aided Software Engineering (CASE) tools was born.

Continuing efforts at prestigious software engineering institutions like the Software

Engineering Institute (SEI) at Carnegie Mellon University have made great strides in

developing standard methods for software safety analysis. Automation of the entire

software development life cycle from requirements development through code generation

and testing is an ongoing project. It is imperative to develop correct requirement and design

specifications in order to eliminate the incorporation of faults and errors in to the given

software system. This is especially important in safety-critical software modules where any

defect could cause loss of life and/or material. The development of correctly-implemented

automated requirement and design generation methods will allow the development of

virtually fault free systems. However, this is far from being a reality. Current technology

in dealing with natural language requirements precludes the development of a correct

automated tool. Automated tools have been proven in the code and testing generation

cycles and are used extensively today. The following manual and automated analysis

techniques are introduced as background for use later in developing a useful analysis

methodology [Ref. 8].

1. Hazard Identification and Analysis

Hazard analysis involves identifying and assessing the criticality level of hazards and

risks involved in the system design. Hazard analysis is an ongoing evolution throughout the

development life cycle of the system. The different stages of hazard analysis consist of

preliminary (PHA), subsystem (SSHA), system (SHA) and operating/support (OSHA).

These analysis are crucial in detecting and identifying safety critical hazards. Several

techniques have been developed to perform these analyses such as Failure Modes and

Effects Analysis (FMEA), Fault Tree Analysis (FTA), Petri Net Modelling, Statecharts,

Event Tree Analysis (ETA), design reviews/walk-throughs, checklists and other hazard/

operability analysis methods. Some of these methods are described below.

a. Fault Tree Analysis

This thesis concentrates on the Software Fault Tree Analysis (SFTA)

methodology extensively. Chapter II is dedicated to FTA and SFTA; their purpose,

concepts and structure. In this section, numerous automated tools developed at the Naval

Postgraduate School (NPGS) under the direction of Doctor Timothy J. Shimeall will be

introduced. These tools will be the core of the proposed software safety analysis

methodology presented later.

ACTT

The Automated Code Translation Tool was developed by Captain Robert

Ordonio, USA, and extended by LCDR William Reid, USN, using resources at the Naval

Postgraduate School. ACTT translates Ada statements into template structures to be used

in SFTA. The tool consists of four components. First, a lexical analyzer, which determines

if the input consists of valid tokens. Next is a parser generator, which checks that the input

uses valid Ada constructs. Next is a template generator, which transforms valid statements

into templates representing possible events associated with the statement in a format

suitable for SFTA. The last component is a file generator that creates a file that meets the

specifications of a fault tree editor (FTE) file type [Ref. 9]. ACTT takes an Ada source code

file as input and processes each Ada statement into its associated fault tree template,

connecting them accordingly. The output is written as an FTE specified file for further

analysis.

FTE

In general, fault tree editors are used to graphically display and modify fault

trees. These editors allow software analysts to interactively manipulate the graphic

representation of a fault tree by using an automated graphic editor. This usage significantly

reduces the time required to draw and redraw the trees during analysis.

The Fault Tree Editor (FTE) used in this thesis was written by Charles P.

Lombardo, Computer Systems Programmer for the Computer Science Department at

NPGS. The code was written in the "C" programming language using XView, an OPEN

LOOK tool kit, for the XI1 Windowing System. This editor loads a user-defined fault tree

file and graphically displays it using standard fault tree symbology. The input file must

conform to the specifications of FTE. The output from ACTT meets this specification and

allows FTE to graphically present its results. The FTE display can then be modified, printed

and/or saved as a new file [Ref. 9].

FI

When dealing with software fault trees, tremendously large numbers of nodes

can be generated from relatively small source code programs. To aid the analyst in

managing these enormous tree sizes, a fault isolator tool, Fault Isolator (FI), was designed

and built. FI was written by Lieutenant Commander Russ Mason, USN, and incorporated

an efficient graphical user interface using the Transportable Application Environment tool

(TAE). FI processes existing FTE compatible files allowing the analyst to "prune" the

original tree. This pruning process is accomplished by searching for the associated tree

node that corresponds to a source code line of interest. FI searches the tree and returns

results in three categories related to the source code line number, exact match, contains

match and closest match. This allows the analyst to determine which node/sub-tree is of

interest and which can be pruned away. FI lets the analyst save the new tree which can then

be displayed in FTE. This pruning process decreases the analysts work load by ehminating

tedious manual tree searches [Ref. 10].

b. Failure Modes and Effects Analysis

FMEA is an inductive technique that attempts to anticipate potential failures so

that the source of those failures can be eliminated. FMEA consists of constructing a table

based on the components of the system and the possible failure modes of each component.

Though the exact implementation of the table can vary, the normal table consists of the

following columns, component, failure mode, effect of failure, cause of failure, occurrence,

severity, probability of detection, risk priority number and corrective action. A list of

possible failure modes is generated for each component and inserted into the table. The

remaining columns for each failure mode are then filled in using validated estimates and

best guess judgements. This is strictly a manual analysis of the system that attempts to

anticipate potential failures [Ref. 8].

c. Petri Nets

Petri Nets are a simple, elegant model for concurrent program analysis. The Petri

Net model is a 5-tuple structured as (P,TJ,0,M). P is a finite set of places drawn as circles

representing conditions. T is a finite set of transitions drawn as bars representing events. /

and 0 are sets of input and output functions which map transitions to places and places to

transitions, respectively. M is the set of initial markings (states) for the modeled net.

Places may contain zero or more tokens drawn as black circles. A marking (or

state) of the Petri Nets is the distribution of tokens at a moment in time. Tokens in Petri

Nets model dynamic behavior of systems. Markings change during execution of the Petri

Nets as the tokens "travel" through the net as in modelling the flow of information. The

execution of the Petri Nets is controlled by the number and distribution of the tokens. A

transition is enabled if each of its input places contains at least as many tokens as there

exists arcs from that place to the transition. When a transition is enabled it may fire. When

a transition fires, all enabling tokens are removed from its input places, and a token is

deposited in each of its output places.

Safety properties of Petri Nets can be analyzed without the need to necessarily

generate the entire reachability graph. The idea is to work backwards from high-risk states

to determine if these hazardous states are reachable, similar to FTA. This backward method

uses the inverse Petri net (reversed input and output functions), and is practical only when

a small number of unsafe states is considered. The idea is to work backwards from unsafe

states to all critical states (i.e. states having at least two successors). When a critical state

10

is reached, interlocks can be used to force the system to take those paths that do not lead to

unsafe states [Ref. 11].

d. Statecharts Analysis

In Statecharts, a normal state transition diagram is enhanced with hierarchical

and compositional features. States can then be clustered into super-states with the

possibility of "zooming in" and "zooming out" of states. In an AND decomposition, states

are split into concurrent subcomponents that communicate via broadcasting. An OR

decomposition decomposes a state into sub-states such that control resides in exactly one

sub-state. When coupled with a standard graphics package, Statecharts enable viewing the

description at different levels of detail. Statecharts can be used either as a stand-alone

behavioral description or as part of a more general design methodology that deals with the

system's other aspects, such as functional decomposition and data-flow specification [Ref.

12].

e„ Others

Nuclear Safety Cross Check Analysis (NSCCA). This methodology was

developed to satisfy the USAF requirements for nuclear systems. This process has two

main components one technical and one procedural. The technical evaluates the software

by multiple analyses and test procedures to ensure that it satisfies the systems nuclear safety

requirements. The procedural implements security and control measures to protect against

sabotage, collusion, compromise, or alteration of critical software components, tools, and

NSCCA results. The goal of the NSCCA method is to attempt to show, with a high degree

of confidence, that the software will not contribute to a nuclear mishap [Ref. 1].

Software Common Mode Analysis (SCMA). This technique is derived from its

hardware predecessor. In hardware common mode analysis, redundant, independent

hardware components are used to provide fault tolerance. Research has shown that there is

a potential for a single hardware failure to affect more than one redundant component

through a software path [Ref. 13]. Software common mode analysis uses structured walk-

11

throughs to examine the potential for a single failure to propagate across hardware

boundaries via a software path [Ref. 1].

Sneak Software Analysis. Another technique derived from its hardware

counterpart. Here, the software is translated into circuit diagrams and analyzed to detect

areas of unreachable code or unreferenced variables. This technique does not provide any

great insight to software safety rather it provides more of a software reliability check and a

poor one at that [Ref. 1].

D. THESIS PROJECT APPLICATION

1. MESA Overview

The Naval Air Warfare Center Weapons Division (NAWCWPNS), China Lake,

California is developing a Missile Engagement Simulation Arena (MESA) in support of

continued real-time weapons systems testing. MESA (Figure 2) is a military construction

project that replaces its predecessor, the Encounter Simulation Laboratory (ESL) located in

Corona, California.

3^^

^Ä >SS2*?25äEJB ^^^^^1 EK5&^^^^ .
^^^Sr\ - - '' PHKB ■-'?&'■.■■ • hnJ^^nSEBuS^^I

Jk IfC^^i HI
jijfe^" _

<-<~4Mpft SaSp^P-1-,." "^v^?^

Figure 2: Missile Engagement Simulation Arena (MESA)

12

MESA is an indoor research, development, test and evaluation facility with the

capability to simulate the engagement of various missile fuzes with airborne targets. It

provides an arena for the study and analysis of the electromagnetic interactions of the

missile fuze sensors with targets during simulated engagements [Ref. 14].

2. MESA System Overview

The MESA system structure is comprised of different hardware configuration items

(HWCI) and computer software configuration items (CSCI) (Figure 3).

Engagement
Generation

CSCI

(Quality
Assurance

CSCI

Fault
Diagnostics

CSCI

Sensor
Transport

HWCI

Control
CSCI

OTSS
Crossrange

HWCI

OTSS
Control Line

HWCI

Data
Acquisition

CSCI

Sphere
HWCI

Figure 3: MESA System Structure

The main HWCFs consist of a Sensor Transport System (STS), two Overhead Target

Support Systems (OTSS) and two calibration Sphere Systems. Each HWCI system is

controlled by a remote computer with associated control software. The CSCI's consist of a

13

Control module, Fault Diagnostic module, Engagement Generation module, Data

Acquisition module and a Quality Assurance module. The Control CSCI acts as the host

coordinator for the MESA system. Each remote computer is capable of running in an open-

loop and closed-loop mode, depending upon the current system state. The Control CSCI

maintains communication with all the remote computers, sending and receiving data as

required to accomplish the given test cases [Ref. 15].

Stepper
Motor

<T

I
Sphere
Control

Computer -—a
Stepper
Motor

O

OTSS

Sphere

Sensor
Transport

Control

CSCI

MESA Arena
(Not to scale)

Figure 4: Calibration Sphere Hardware Diagram

14

E. PROBLEM STATEMENT

Due to availability of MESA software, this thesis will only analyze the sphere control

system module. MESA has two calibration spheres that are suspended overhead the arena.

Each sphere has two control lines and two encoder lines. The control lines position the

spheres in a vertical plane perpendicular to the data-collection direction. Movement up

range and down range is not under software control and requires the hoists to be moved

manually. The encoder lines are used to obtain stretch-independent measurements of the

control lines' length. Each sphere has a sphere computer that is part of the distributed

control system. Each sphere computer controls its associated control and encoder lines.

Figure 4 depicts the physical layout of one of the calibration sphere systems. The sphere is

suspended by control and encoder lines connected to individual stepper motors located

within the structure of the arena. The stepper motors are controlled by the remote sphere

computer which operates in both an open loop mode for sphere speed control and a closed

loop mode for sphere position control. The operator moves the sphere into its required

position through the use of the control module interface [Ref. 15].

This thesis addresses the questions, can larger scale software control systems be

efficiently and effectively analyzed using new and existing automated and semi-automated

software safety analysis methodologies? Specifically, can the automated tools ACTT, FTE

and FI be used in combination with the standard software fault tree analysis technique to

provide accurate and meaningful software safety analysis data on a real world, currently

developing project? These questions will be answered by analyzing the MESA calibration

sphere subsystem using the automated tools and methodologies developed at the Naval

Postgraduate School.

F. SUMMARY OF CHAPTERS

1. EL Fault Tree Analysis Process

This chapter outlines the fundamentals of fault tree analysis and its extension into the

software arena with software fault tree analysis.

15

2. DI. Software System Analysis Methodology

This chapter outlines a sample software safety analysis methodology consisting of a

combination of standard manual techniques and locally developed automated techniques.

3. IV. Methodology Implementation Results

This chapter describes the implementation and presents the results of the sample

software safety analysis methodology on the MESA Sphere-HWCI control software.

4. V. Conclusions

This chapter presents author derived conclusions, recommendations and desired future

work areas of research.

16

II. FAULT TREE ANALYSIS

Fault tree analysis was developed at Bell Telephone Laboratories in 1962 by H.R.

Watson. It was initially designed to be used for safety and reliability studies of the

Minuteman missile system. Engineers at Boeing further developed and refined the

procedures and became the method's foremost proponents as a method for performing

safety analysis of complex electromechanical systems [Ref. 2]. A fault tree consists of fault

events, branches and tree gates. Events are failure situations resulting from the logical

interaction of primary failures or those failures of interest. Branches connect two events or

a tree gate and an event. Gates are boolean logic symbols that relate the input to its output.

A system is represented by a series of these components making a fault tree.

Fault tree analysis starts with defining a particular undesirable event and then provides

an approach for analyzing the causes of this event. It is important to choose this event

carefully. If it is too general, the fault tree becomes large and unmanageable, likewise, if

the event is too specific then the analysis may not provide a sufficiently broad enough view

of the system. Fault tree analysis can be extremely time consuming and expensive.

Therefore some method of choosing a set of desired hazardous events must be

implemented. This can be accomplished through the preliminary hazards analysis

previously discussed. Each top-level hazard event is then analyzed.

Once the hazard has been chosen, it is used as the top event of a fault tree diagram. The

system is them analyzed to determine all the likely ways in which that undesired hazard

could occur. The fault tree is a graphical representation of the various combinations of

hazards that lead to the undesired event. The faults may be caused by component failures,

human failures or any other event that could lead to the undesired hazard, such as a random

environment event. It should be noted that a fault tree is not a model of the system or even

a model of the ways in which the system could fail. Rather it is a depiction of the logical

interrelationships of basic events that may lead to a particular undesired event [Ref. 8].

17

The two most common gates used in fault tree analysis are the AND gate and the OR

gate. If one or more events are required to produce the output event then an AND gate

connector is used. The AND gate connects two or more hazards. An output occurs if all of

the input hazards occur (Figure 5).

Figure 5: AND Gate

If one or more events can produce the output event then an OR gate connector is used.

An output hazard occurs from an OR gate if any of the input hazards occur (Figure 6). Other

gates that are occasionally used in FTA are the exclusive OR, priority and the inhibit. These

will not be covered here.

Figure 6: OR Gate

18

This analysis process continues until all hazards in the tree are either defined or cannot

be decomposed further. The culmination of a fault tree analysis is a depiction of the

required hazard sequence that must happen for the top hazardous event to occur. If no such

path exists, then it is shown that the top event cannot occur [Ref. 9].

A. SOFTWARE FAULT TREE ANALYSIS

Software fault tree analysis (SFTA) was developed in 1983 through three nearly-

simultaneously independent efforts by Meintee [Ref. 16], Leveson and Harvey [Ref. 17]

and Taylor [Ref. 18]. Their research applied proven FTA techniques to the analysis of

software. The process paralleled standard FTA principles, starting with a top event and

working backwards through the tree, generating a path that showed the necessary hardware

as well as software events that had to occur.

SFTA, like FTA, starts with a defined top event. This event is described through a

hazard analysis and is usually a safety critical event. The process assumes that the system

has failed according to the defined event and works backwards to determine the set of

possible paths that allow the event to occur. This path is made up of further decomposed

events connected by gates similar to those in FTA. Events are continually expanded until

either they cannot be developed further due to lack of information or insufficient

consequences or they no longer require analysis. Common software fault tree symbols and

their associated meanings can be found in Appendix A. Once the tree has been fully

expanded and analyzed, it can be shown that the program either allows or disallows the top

event state to be reached. This information is then used to correct the program, if required,

eliminating the undesired event's occurrence. Each event in the set of undesirable events is

then analyzed in a similar fashion. It has been shown that for large systems, the use of

partial SFTA can be effective in finding faults and in identifying critical modules that may

need further analysis [Ref. 1].

An interesting note arises between the manner in which SFTA handles the

quantification of event probabilities. Unlike hardware fault trees where each hazard/event

19

can be assigned a given probability of failure due to centuries of historical data, software

failures are in and of themselves logical, not lending themselves to a level of probability.

The software either works or it does not. This distinction between probabilistic hardware

fault trees and logical software fault trees is important in understanding the complexity

involved in trying to conduct a complete software analysis.

In summary, SFTA can be used to determine software safety requirements, detect

logic errors and identify multiple failure sequences involving different parts of the system

that lead to hazardous events.

20

III. SOFTWARE SYSTEM ANALYSIS METHODOLOGY

Most analysis methodologies incorporate different combinations of software

analysis techniques depending upon the application, available tools and experience of the

analyst. Combining techniques and knowing when and which ones to use is an important

part of the over all system safety analysis process. Cha discusses a safety oriented design

method whose goal is to minimize the amount of safety-critical code and to produce a

design whose safety can be certified [Ref. 19]. His work asserts that hazard analysis of

designs allows the safety analyst to modify the software design to prevent the occurrence

of hazardous states during operation. It is important that a practical, standardized

methodology be implemented when performing software safety analysis. This chapter

outlines a methodology consisting of a combination of standard manual techniques and

automated techniques that have been developed at the Naval Postgraduate School. This

methodology will be partially implemented and demonstrated in the next chapter.

A. STEP 1: CONCEPT EXPLORATION AND SYSTEM RESEARCH

The analyst must become intimately familiar with the system and its subsystems

before any realistic analysis can be started. Interviews and discussions with design team

personnel, project site visits, related system research and current system documentation

reading are all possible sources of information. This research must be thorough and

complete. Additionally, it must include any management proposed analysis constraints.

These constraints should be included in the software development plan and cover analysis

time lines, milestones and goals. By accomplishing this step the analyst gains a

fundamental understanding of the entire system design and its relevant interfaces. Though

the purpose of this step is not to make the software analyst into the system engineer, the

time spent in this step will pay dividends throughout the entire analysis process.

21

B. STEP 2: HAZARD IDENTIFICATION

There does not seem to be any one easy way to identify hazards within a given

system. Hindsight is always 20/20. After a mishap occurs, an investigation usually reveals

a set of causes and the engineers learn for the next time [Ref. 8]. However, in safety-critical

systems, there may be no next time. With no "systematic" process in which to look for

hazards, the use of domain experts and thorough research is proposed as a "best"

alternative. If the concept exploration step above is performed correctly, a decent

foundation will be available to venture into this identification process. A group of "experts"

should be designated and chartered to perform this process. An important pre-requisite

must be that the group understands the differences between the new system and previous

systems, if any, so that they can understand the new failure modes introduced by the new

system. Numerous group decision methods have been proposed. The Delphi Technique and

"brainstorming" are offered here as a best combination usage.

1. Delphi Technique

This method was created by the Rand corporation for the U.S. government and

remained classified until the 1960's. The basic approach is to send out a questionnaire to

all members of the group that enables them to express their opinions on the discussion

topic. An appointed coordinator collects all the inputs, collates them and returns the

summarized information to the members in an anonymous format. This process continues

until a consensus is reached on the topic [Ref. 8].

Using this technique in hazards identification offers a wide range of advantages.

With the dramatic increase of electronic mail, many more "experts" have become available

for inclusion to software groups. The constraints of physical meetings would be eliminated

and the process of collecting and distributing the results relatively painless. Group

members could easily digest the required system research information and make sound

judgements in a matter of days vice weeks.

22

2. Brainstorming

This "technique" may seem more like common sense then a defined process. But in

cases where resources are limited and/or the system is big enough to prevent obtaining an

exhaustive hazards list, brainstorming can actually provide a plethora of hazards that

otherwise would not have been identified. No meetings are required. Experts are solicited

to list all possible hazards that they envision for the system. These lists are gathered by the

analyst and processed into a formal systems hazards list.

Through the combined use of the Delphi Technique and brainstorming in this step,

the analyst is provided with an excellent set of potential high level system hazards to start

the analysis process.

3. Program Management Input

Management plays a vital role in hazards identification. It must allow the Delphi

group or the solicited experts time to produce the identified hazards, but not so much time

that efforts are wasted. Some form of guidelines needs to be established. This could be in

the form of a set of hazard analysis criteria or as simple as a time line. With the support of

management and the use of good research and brainstorming techniques, a complete and

useful set of hazards can be identified and readied for analysis.

C. STEP 3: PRELIMINARY HAZARD ANALYSIS

This step actually begins the analysis section of the process, but as its name implies,

it is the precursor to the formal hazards analysis and provides a framework from which the

analyst can conduct a detailed analysis.The PHA must be executed using the most current

resources available. Due to its currently tedious and manual execution, any delay or re-

design causes frustration and lost work man hours.

A thorough, methodical analysis of each available resource must be accomplished.

By starting with the software development plan (SDP) and the software requirements

specification (SRS), the analyst can isolate the areas that relate directly to the list of

identified hazards. This will drastically reduce the task at hand. This initial cutting down of

23

requirements helps reduce the scale and complexity of the analysis. Depending upon the

system being analyzed, other documents may need to be inspected. This list of documents

should include at a minimum, those documents used in Step 1 during the Concept

Exploration and System Research phase.

Next, a table is constructed containing each of the identified requirements, its

associated possible hazard, possible result if the hazard occurs and its severity level in

terms of loss of life and property. An example is provided in Table 1. The idea here is to

take the developed list of hazards from Step 2 and map them to their defining requirements

found in the system documentation. A thorough mapping is important, however, an

exhaustive one generates an unmanageable table. It is best that an ongoing dialogue

between the analysts and the software developers be concurrent with the PHA to help

reduce, combine and/or eliminate unnecessary mappings. By accomplishing this step the

analyst narrows the scope of the analysis and begins to focus on the safety critical areas of

the system. Additionally, the analyst gains a rough quantified understanding of the analysis

problem and identifies the specific high severity component hazards of interest which will

be used as initial starting input for the next step, Hazard Analysis.

SDP Para
Ref

SDP Requirement Possible Hazard Possible Result Severity

1.2.2 Control CSCI moves
and positions the simu-
lation hardware

Erroneous control sig-
nals are generated and
sent to the system
hardware

Hardware/Personnel
damage/injury

High

Table 1: Example PHA of MESA Software Development Plan

D. STEP 4: HAZARD ANALYSIS

This step begins with the analyst determining which software modules are the most

safety critical using the results of the PHA. This refined level of hazard identification at this

24

step allows the analyst to perform a combination inductive and deductive technique. This

combined process first uses Failure Modes and Effects Analysis (FMEA) as an inductive

technique to determine what hazardous states are possible. Once these states are defined, a

specific hazard fault tree is developed. Then the deductive technique of SFTA is applied to

determine how the specific hazard can occur. Here the proposed methodology diverges

from the high level software system context and starts to concentrate on specific software

configuration items.

1. Step 4.a: Failure Modes Effect Analysis

As described in Chapter I, the implementation of FMEA is accomplished by

manually constructing a table. Table 2 shows an example, building upon the PHA in Step

3. Even by processing only identified safety-critical items, the table can become a rather

large document. A directed effort to consolidate and combine similar items through group

discussion will help keep this step manageable.

Item Failure Mode
Effect of
Failure

Cause of
Failure

Occur
rence

Severity
Prob

Detect
Risk

Corrective
Action

CSCI - Host/remote Inadvertent Valid Host 5 9 5 225 Incorpo-
control computers motion of signal sent to rate a loop
signals out of synch

(Closed vs.
Open loops)

hardware
(ST,Sphere,
OTSS)

Remote in
an invalid
mode
(Closed vs.
Open loop)

synchroni-
zation
algorithm.

Table 2: Example FMEA of MESA Control CSCI

By accomplishing this step the analyst more succinctly defines the safety-critical

scope of the analysis and determines which areas need to be further analyzed. The output

of the FMEA produces a set of top-level events that are then used as input for the next step,

Specific Hazard Fault Tree Generation.

25

2. Step 4.b: Specific Hazard Fault Tree Generation

At this point the analyst has accumulated a list of independent safety-critical events.

These events are used to generate separate fault trees that identify the logical pathways

from those events to their associated source code. The analyst makes each top-level event

a root node in its specific hazard fault tree. The node is then decomposed into its required

causes. This is continued until the final event leaf nodes succinctly define source code

modules or areas. FTE is extremely useful in this step. With its graphic interface and

immediate feedback, FTE provides the analyst with the generated fault tree quickly and

effectively. The leaf nodes from this step become the input for the next step, SFTA.

3. Step 4.c: Software Fault Tree Analysis

In traditional methodologies, SFTA is carried out using manual methods. At most,

a crude text and/or graphics editor would be used to assist the analyst in drawing and re-

drawing the required fault trees with absolutely no computer-aided analysis. This paper's

proposed methodology systematizes the standard SFTA technique by incorporating the use

of locally-developed, automated, fault-tree tools. This automated fault-tree generation and

manipulation process dramatically reduces analysis time and substantially reduces human

induced errors. At this point, developed code is required for the following steps to be

executed.

a. Step 4.C.1: ACTT

The analyst takes the set of top-level events generated in Step 4.a and

determines which of those events have had their Ada code developed. Those not yet coded

should be noted and a list kept for other processing, either when the code becomes available

or using a design-analysis technique. It is important that currently-uncoded critical modules

not be passed over or forgotten. Source-code-line-number labels should be generated for

all coded modules. Top-level events should then be paired with their corresponding code

lines. This mapping is necessary when using FI in the following step.

26

Each coded module should then be ran through ACTT. This process is quick

and generates a software fault tree in the FTE-specified format. The analyst should be

prepared for a large number of output files as each module is processed. ACTT generates

a separate fault tree file for the main procedure/package body, each task body and each

defined exception statement. Separate working areas for each module helps in keeping the

output organized. This is important as ACTT writes its output to identical file names that

will over write any previously existing output from other processed modules. An example

excerpt from an ACTT generated file is shown in Figure 7. For large numbers of modules,

script or batch files can be written to execute this step in an even more efficient manner.

After all necessary modules are processed, the output can then be manipulated and

analyzed using the combination of Fault Isolator and Fault Tree Editor as described in the

next step.

431
Sequence of statements causes Fault
traffic.a
45 48 0 0 1 2 2

430
Last statement causes Fault
traffic.a
45 48 0 85 1 0 1

Figure 7: Example ACTT Output File

It is interesting to note, that modules not fully coded can still be processed

by ACTT. This "pre-processing" may prove useful in some cases where a more abstract

fault tree could help to determine which detailed code structures would be less fault prone.

27

b. Step 4.C.2: FTE/FI

This step uses FI and FTE in combination to isolate and manipulate the fault

tree generated in the Step 4.c.l. The analyst should launch both applications and position

their work-space interfaces so that both are visible. The idea here is to use FTE to display

the fault tree, determining which sub-tree and/or nodes need to be isolated for further

processing based upon the source-code lines of interest.

FTE is used to display the ACTT generated fault tree. The same fault tree is

then opened for processing using FI. FI will display the total number of nodes and the tree's

depth (root node is level zero). If the tree is of small to medium size, these tree statistics

can be verified by moving the FTE display around, counting the exposed nodes. The Search

for Nodes option in FI is then selected. Using the source-code-line-number created in Step

4.C. 1 as input, FI returns three lists of matching nodes, Exact Match, Containing Match and

Closest Match. From this, the analyst can determine which node, nodes or sub-trees that

need to be eliminated. Once the sub-fault tree is isolated, it can be displayed in FTE for

further isolation, to be printed or saved as a new fault tree file. Figure 8 shows FI's main

menu and Figure 9 shows FTE's display of an example fault tree.

IIFault Isolator Tool - Main Menu;;

Choose an Option

♦■ Open a New File for Processing

<& Conduct a Search for Nodes

-0^ List Search Results

^ Isolate a Specific Node (Create New FTE File)

<0> Manipulate Fault Descriptions

Exit Program

Figure 8: Fault Isolator Tool Main Menu

28

JFauitTYiee Editor (FTE);;

(Info) (Help) (Print") (Load) (Save) (Quit

431

MEID
Mode: NORMAL

— —D
Grid: OFF Snap: OFF

Figure 9: Fault Tree Editor Example Display

The combined use of these two tools gives the analyst a powerful method to

perform efficient and accurate manipulation and isolation of the fault tree. These isolated

sub-fault trees depict the safety-critical-software hazards and their possible paths of

occurrence. With these graphical depictions the software analyst can then move onto the

next step of results analysis.

4. Step 4.d: Results Analysis

The final analysis of the preceding automated and semi-automated steps is now

performed. This analysis is still limited to manual methods supported by automated tools

29

and takes on an iterative process format. As design and code decisions are made from the

generated sub-fault trees, repeated manipulations and re-generations of those trees will be

required using FI and FTE. Each identified hazard should be processed through these steps.

A bringing together of coupled modules is anticipated and will result in the need for the

merging of various generated fault trees. The current functionality of FI and FTE does not

allow this yet. Future implementation is being proposed. At this point the analysis

methodology has reached a logical conclusion point.

E. METHODOLOGY SUMMARY

This proposed software system analysis methodology has tried to establish a direct,

efficient and effective examination process using a combination of standard manual

techniques and newly constructed automated tools. The methodology steps and knowledge

gained are summarized in Table 3 below. An analysis of a portion of the MESA control

system will be conducted implementing this methodology in the next chapter.

Step Process Knowledge Gained

1 Concept Exploration and System Research Overall system design

2 Hazards Identification Potential high level
• Delphi Technique and Brainstorming system hazards

3 Preliminary Hazard Analysis Specific component
hazards of interest

4 Hazards Analysis How given possible
♦ 4.a. Failure Modes Effects Analysis hazardous states can

• 4.b. Specific Hazard Fault Tree Generation occur

• 4.C. Software Fault Tree analysis

• 4.C.I. Automated Code Translation Tool

• 4.C.2. Fault Tree Editor/Fault Isolator Tools

• 4.d. Results Analysis

Table 3: Software System Analysis Methodology Summary

30

IV. METHODOLOGY IMPLEMENTATION RESULTS

This chapter describes the implementation of the complete software safety analysis

methodology. The MESA control system was selected for analysis due to its Ada

programming language usage, distributed safety-critical control system structure and its

apropos military application nature. Each methodology step outlines action taken and the

corresponding results. This provides a concise discussion on the implementation and

resulting usefulness of each step.

A. CONCEPT EXPLORATION AND SYSTEM RESEARCH

Initial system research was conducted through a combination of manual and

electronic means. Extensive use of the Internet allowed system design documentation to be

updated and accessed in minimal time. Additionally, constructive conversations with the

MESA system engineer and software development team were made easily through the use

of electronic mail. These were important factors due to the over 300 miles between the

MESA facility and the Naval Postgraduate School. A project site visit was conducted to

China Lake, CA to tour the facilities and meet the MESA project personnel. The

discussions held were extremely useful in providing system familiarity, identifying

relevant hazards and projecting system implementation availability.

Two primary documents were utilized to obtain the required system familiarity.

These were the Software Development Plan (SDP) [Ref. 14] and the Software

Requirements Specification (SRS) [Ref. 15]. These documents were critical to the

understanding of the system, its design and the project's development plan. A thorough

discussion on these documents combined with the project personnel meetings allowed

sufficient details of the system interfaces to be collected and identified for use in

determining possible system hazards.

31

B. HAZARD IDENTIFICATION

The hazard identification step was implemented through the use of brainstorming

sessions. The Delphi Technique was not implemented due to the academic nature of this

analysis. Numerous face-to-face and electronic brainstorming sessions were held between

different combinations of the author, the author's thesis advisor and various MESA project

personnel. This provided a small group of experts to analyze the system and identify

potential high-level, high-severity hazards. This led the group to entertain only those

hazards dealing directly with loss of life and property/material damage.

Each HWCI was analyzed and lists of possible hazards generated. The analysis

was then artificially focused on the Sphere HWCI since it was the only HWCI at the time

of the analysis with fully-functional Ada control code. Six high-level possible hazards were

identified as listed below.

•Sphere Impacts Arena Structure

•Sphere Impacts Object Other Than Arena

•Sphere Stops At Undesired Position

•Sphere Encoder Lines Break

•Sphere Control Lines Break

•Inadvertent Sphere Line Movement

C. PRELIMINARY HAZARD ANALYSIS

The PHA step started with continued examination of the SDP and SRS. During this

process, it was determined that four of the six high-level possible hazards were actually

predecessors for the other two. This narrowed down the list to two specific hazards of

interest. A detailed mapping of each of these specific hazards of interest to its associated

defining-requirements in the SDP and SRS was made. Table 4 depicts the hazards, their

defining requirements and possible result if the hazard occurs.

Though the results look somewhat simplified, this step proved to be labor intensive

and time consuming. The SDP and SRS contained over 150 pages of requirements,

requiring 45 hours of manual reading and analysis. The PHA narrowed the scope of the

32

analysis, focusing on the specific hazards of interest within the Sphere HWCI. The other

system HWCIs and CSCIs were also examined. As an example of a more involved PHA,

Appendix B shows the PHA results on the MESA Control CSCI. To ensure the validity of

SRSPara
Ref SRS Requirement Possible Hazard Possible Result Severity

3.2.2.3.2.5 Sphere Control shall
control the sphere
encoder and control
line movements

Sphere impacts arena
structure

Sphere/Personnel
damage/injury

High

3.2.2.3.2.3

3.2.2.3.2.4

3.2.2.3.2.5

ST Control shall con-
trol the sensor trans-
porter movements

OTS Control shall con-
trol main hoist line,
control lines and
encoder line move-
ments

Sphere Control shall
control the sphere
encoder and control
line movements

Sphere impacts object
other than arena

Sphere/ST/Target/
Personnel damage/
injury

High

Table 4: Results of PHA on MESA Sphere HWCI

this analysis step, a review of the PHA was conducted by MESA project personnel during

a scheduled site visit. This review proved extremely valuable by identifying and

prioritizing specific system hazards. This step demonstrated that the PHA greatly reduced

the number of possible hazards for each configuration item, narrowed the scope of the

analysis to concentrate on the specific hazards of interest and enabled the analysis

methodology to focus on the safety-critical areas of the Sphere HWCI.

D. HAZARDS ANALYSIS

The hazard analysis began by looking strictly at the Sphere HWCI specific hazards

of interest. A FMEA was performed followed by the "meat of the analysis" using SFTA.

33

1. FMEA

The Sphere HWCI FMEA produced the results depicted in Table 5. The individual

FMEA items were derived from their safety-critical properties as related to the specific

hazard of interest. This step provided a clear, concise listing of the specific top-level events

necessary to develop the Specific Hazard Fault Trees.

Item Failure Mode Effect of Failure Cause of Failure Corrective Action

Sphere
HWCI
control
signals

Sphere con-
trol software
generates
erroneous
motion com-
mand

Undesired com-
manded motion
of Sphere

• Data initialization failure

• Undesired movement
value generated

• Invalid incremental
movement calculation

Incorporate soft-
ware analysis
checking to ensure
valid motion com-
mands generated

Sphere
hardware

Sphere
encoder/con-
trol lines
break

Sphere motion
causes impact

• Hardware defective

• Hardware limits
exceeded

Ensure hardware
specifications satis-
fied and routine
hardware inspec-
tions conducted

Table 5: Results of FMEA on MESA Sphere HWCI

2. Specific Hazard Fault Tree Generation

The Specific Hazard Fault Tree Generation step was implemented using the hazards

analysis results from the previous two steps. The two top-level specific-hazard faults of the

Sphere HWCI determined from the PHA were designated root nodes for their respective

fault trees. Through the use of FTE, the tree generation process began. Each root hazard

was piece-wise decomposed into to its subsequent fault-causes. This process was

accomplished through the interactive discussions between the author and the author's

thesis advisor. As each hazard's fault-causes were determined, corresponding nodes were

added to the fault tree. Each "Cause of Failure" result generated in the FMEA was used to

help build the tree. These fault-causes ended up being interior nodes of the tree and

logically linked the specific-hazard root node with the user-generated, source-code level

leaf nodes.

34

The first specific hazard fault tree was generated for the specific hazard sphere

impacts arena (Figure 10). The top-level fault was decomposed into two independent

faults, 1) sphere control line breaks OR 2) controlled motion of the sphere impacts the

arena. These two faults are depicted at level one in Figure 10. The control-line-breaks fault

impact

H
ctln brk control

sw fail hw fail

in it err value er track er

augrer*

Figure 10: Sphere Impacts Arena Specific Hazard Fault Tree

35

was not further analyzed since it dealt more with hardware failure issues than software. The

controlled-motion fault was further decomposed using the FMEA failure causes as shown

in Figure 10. Eventually five refined leaf nodes were generated. These leaf nodes succinctly

defined specific Sphere HWCI source-code modules.

This process was duplicated for the second specific hazard fault tree, Sphere

impacts object other than arena (Figure 11). This tree generation effort paralleled that of

impact

obj mot cntrl brk control

target

sw fail hw fail

init err value er track er

Figure 11: Sphere Impacts Object Other Than Arena Specific Hazard Fault Tree

36

the first but included the additional first-level independent fault of object motion other than

the sphere causes impact. From the system design, the only logical objects that could

impact the sphere were the target, sensor transporter and the sensor. Each of these objects

became level-two nodes and further decomposition was performed.

The remainder of the tree in Figure 11 was identical to the first tree with the

exception of the "init err" node which contained an additional fault level. This was due to

the possible collision of other objects during sphere initialization. The resulting five leaf

nodes were the same as the first tree.

Due to the similarities of the two trees and the fact that the sphere impacting the

arena seemed more consequential, only the sphere-impacts-arena tree was further analyzed.

Each of the five leaf nodes in Figure 10 were then used to start the SFTA process in the next

step. The use of FTE in this step was essential. Having the ability to graphically represent

these top-level hazards in a real-time manner made the process of developing these trees

painlessly effective.

3. Software Fault Tree Analysis

The SFTA step began the exciting portion of the analysis. The five source-code-

interface leaf nodes in Figure 10 were designated as individual, software-starting root

nodes for their respective software fault trees. A mapping of these software-root nodes to

their associated source code files was generated. This mapping was accomplished by using

manual and semi-automated methods to search all source code files for relevance to the

software-root node faults. This was extremely useful in reducing the amount of source code

to be analyzed, however it was time consuming and a bit tedious. Table 6 shows the results

of this mapping.

SW Root Node Fault Source Code File

Data Error Wrong initialization data provided
to software

Fault_monitor_s.a
Remote_sphere.a

Table 6: Software Root Node Mapping to Sphere Source Code Files

37

*1

SW Root Node Fault Source Code File

Check Error Initialization check fails to find Fault monitor s.a
data incorrect Remote_sphere.a

Algorithm Error Closed loop position algorithm Closed_loop_position_
generates bad values control.a

Tracking Register Encoder line tracking not regis- Digital_input_s.a
Error tered in software Digital_output_s. a

Encoders_b.a
Evaluate_s.a
Fault_monitor_s.a
Hw_reset.a
Remote_sphere. a

Encoder Line Breaks Encoder line break causes contin- Digital_output_s. a
ued motion Encoders_b.a

Evaluate_s.a
Fault_monitor_s.a

Table 6: Software Root Node Mapping to Sphere Source Code Files

A second mapping was then generated to identify the specific source code

procedures and functions that would fall under each software-root node. Once again, the

identification of these procedures and functions was accomplished by searching each pre-

mapped source code file for modules of relevance. This was an absolutely necessary step

Source Code File Procedure of Interest SW Root Node

Closed_loop_position_
control.a

Calc_Within_Tolerance
Calc_Errors
Calc_Steps
Steps_Or_Null
Move_Steppers
Spread_Of_Errors_During_Settle
_And_Hold_Times

Algorithm Error

Digital_input_s. a Get_Control_Words Track Register Error

Table 7: Sphere Source Code Procedures of Interest Mapping to Software Root Node

38

Source Code File Procedure of Interest SW Root Node

Digital_output_s. a Encoders_Up Track Reg Error/
Encoders_Down Encoder Line Break
Encoders_On
Encoders Off
UnFreezeJEncoder_Readings
Freeze_Encoder_Readings

Encodersjxa Get_Values Track Reg Error

Evaluate_s.a Evaluate Track Reg Error/
Encoder Line Break

Fault_monitor_s .a Initialize_Encoders_History Data Error/Check Error

Check_For_Malfunction Track Register error

Broken_Encoder_Line Encoder Line Breaks

Hw_reset.a HW_Reset Track Register Error

Remote_sphere_b- a Initialize 1
Initialize2
Initial_Engagement Conditions
Go

Data Error/Check Error

Move_Encoder_Line Track Register Error
Set_State
Stop_Motion
Stop_AU_Lines

Table 7: Sphere Source Code Procedures of Interest Mapping to Software Root Node

in the effort to construct each individual software fault tree. Each procedure, function and

task body of interest would become itself a software sub-tree connected to its parent

software-root node. Table 7 shows the results of this second mapping.

a. ACTT

This step started with some initial work-area house-keeping. An electronic

directory was generated for each software root node listed in Table 7. The mapped-source-

code files for each node were then copied to that directory. Each source code file was run

39

"^f*"''

through ACTT, capturing the execution using the Unix system script utility. ACTT quickly

and efficiently generated tree templates for each file. Table 7 shows each source code file

and the number of ACTT generated nodes in its set of templates. These extremely bushy

Source Code File
Number of Generated

Nodes

Closed_loop_position_control.a 1929

Digital_input_s.a 86

Digital_output_s. a 1074

Encoders_b.a 447

Evaluate_s.a 577

Fault_monitor_s.a 1573

Hw_reset.a 25

Remote_sphere_b.a 2423

Table 8: Number of ACTT Generated Fault Tree Nodes Per Source Code File

trees were an expected result. ACTT separated each set of templates into three different

areas, a main template, exception statement templates and task body templates. Only source

code with exception and task body constructs generated the latter two template types. This

execution method for ACTT allowed clean, concise processing of each required file. The

outputs from this step, the ACTT generated templates and the Unix script session files, fed

directly into the next phase of the analysis using the FI tool.

b. FI Pruning

The next step in the analysis involved doing a first-pass pruning of

irrelevant sub-trees from the generated templates, making them more manageable. FI and

FTE were used effectively to achieve this. Each generated template was loaded into FI and

FTE. FI accurately displayed the number of nodes and tree levels and FTE provided the

graphical structure. By searching the Unix script files, individual source code lines of

interest were identified and entered into FI for processing. The source code lines of interest

40

*»

were chosen based upon the relevance to their associated initial fault statements listed in

Table 6. FT accurately provided a listing of nodes in the tree relating to each source code

line. New root nodes were selected and relevant sub-trees generated. Some of the trees were

able to be pruned directly through FTE, though FT was still used to identify the correct

nodes for pruning. This first-pruning process was extremely effective in reducing the sizes

of all the fault sub-trees. This was found to be an extremely helpful step in that it allowed

faster, more efficient processing of the sub-trees in the next step, Results Analysis. A

comparison between the original and first-pruned sub-tree sizes is shown in Table 7.

Software Root Node Original
of Nodes

First-Pruned
of Nodes

Check Error 647 409

Data Error 649 411

Algorithm Error 1756 1325

Encoder Break 1150 548

Tracking Register Error 1527 953

Table 9: Comparison of Original vs. Pruned Software Root Node Fault Tree Size

Appendix C contains the top-level fault trees fault descriptions and the software-root node

fault trees generated in the analysis of the Sphere HWCI. A complete listing of each nodes

associated fault statement is included as well.

c. Results Analysis

At this point, the analysis process had provided a complete fault tree of the

Sphere HWCI, starting from the identified specific hazard of interest, sphere impacts

arena, in the top-level tree, to numerous source-code-statement-construct leaf nodes

generated in the software-root node sub-trees. The fault tree contained over 5700 nodes and

depicted all safety-critical possible fault paths. A complete results-analysis step would take

this data and systematically analyze each possible path to determine which faults could and

could not occur. This step in itself would be a challenging task to say the least. Due to time

41

limitations and the desire to demonstrate the remainder of this methodology, only one

subset of fault paths was analyzed. The analyzed fault was that relating to the question, if

an encoder line breaks, what happens?

Sphere Impacts Arena

I
Computer control allows

continued motion

I
Encoder line reader reads bad

value

I
Encoder line fed at bad rate

I
Encoder line breaks

Figure 12: Encoder Line Breaks Causal-Link Analysis Diagram

To analyze this fault an abstract causal-link analysis diagram was

constructed. Figure 12 shows the derived causal steps between the two physical events

"Encoder line breaks" and "Sphere impacts arena." When the encoder line breaks, the

Sphere-HWCI control system determines that an erroneous encoder line speed is present,

processes that input and sends signals to stop all motion. The analysis looked at the possible

logical paths that could occur to prevent the required stop signals from being sent, thus

42

allowing continued motion of the Sphere into the arena. Figure 13 depicts the software node

srfcdr oft

nw breaK"*]

/feez\

bfk ecüir

evaluate

ecdr brk

lanch

calc err

/or\

e/dr dow

'Kar ON ,
dr ofr unfreeze

Figure 13: Encoder Line Breaks Software Node Sub-Tree

sub-tree that represents these logical paths. A calculation error in any one of the attached

procedures-of-interest sub-trees could cause the "ecdr brk" node fault, encoder line break

causes continued motion, to be true, thus leading to the Sphere impacting the arena. By

using proof-by-contradiction, a systematic process was performed on each sub-tree

determining if a calculation error would or would not lead to a true "ecdr brk" node fault.

Irrelevant nodes and sub-trees were "diamonded out" through the use of FI and FTE. It was

found that all procedure-of-interests could be diamonded out except for the "brk ecdr" and

43

"evaluate" sub-trees. Appendix C contains these two procedure-of-interest's final "pruned"

sub-trees, showing all possible, logical fault paths leading to the "ecdr brk" fault node.

Each of these fault-paths were then analyzed to determine which, if any,

could occur. The fault tree depicting the calculation algorithm that determines if the stop

motion procedure is executed (via setting a boolean value), is shown in Appendix C, Figure

26. Starting at each leaf node, an examination of the associated source code showed that

none of the fault-paths could occur. As each node and its code were analyzed, they were

diamonded out as it was determined that the robust code structures and fault-tolerant

procedure calls eliminated a possible fault path. Additionally, the incorporation of

hardware fairleads on the encoder lines would prevent sphere motion beyond set safety

distances. Thus, both a software and hardware failure would need to occur before a broken

encoder line would lead to unintended motion. This concluded the analysis of the encoder

line break fault showing that the actual source code that calls the stop motion procedure was

fault-free and correct.

E. EFFORT EXPENDED

This analysis methodology required many man-hours of work and a fair amount of

computer resources. Though many supporting members provided invaluable insight and

guidance, the day-to-day analysis crunching was basically performed single-handedly by

the author. Each methodology step demanded its own unique effort and resources. The

actual amount of source code analyzed was in excess of 74,000 lines and required 100 man-

hours to complete.

The first phase of this methodology, Concept Exploration/System Research,

Hazard Identification and Preliminary Hazard Analysis, involved a substantial amount of

reading, examination and interpretation of numerous system resources with minimal

computer support effort. Many man-hours were expended tracing system requirements for

hazard identification and analysis. For example, the PHA on the Sphere-HWCI and

44

Control-CSCI alone required over 35 man-hours to complete. This phase was a manual

process that required the most man-hours and will be the most challenging to automate.

The second phase of this methodology, Specific Hazard Fault Tree Generation and

Software Fault Tree Analysis with ACTT, FI and FTE, involved minimal amount of

manual effort and a substantial amount of computer effort. The simultaneous use of ACTT,

FI and FTE was critical in this analysis. The systematic, iterative process of generating fault

templates with ACTT and alternating between viewing/reviewing the associated fault trees

in FTE and pruning/re-generating those trees with FI required a thorough understanding of

each tool, the methodology and the supporting computer hardware and software. With this

knowledge, the actual effort expended in a typical analysis of one of the given software-

node fault trees was on the order of hours. This time would be further reduced for those

whose life is devoted to software analysis. However, without the use of these semi-

automated tools and their integration into this methodology, even the most proficient

software analyst would spend more time in accomplishing the same analysis.

The third phase of this methodology, Results Analysis, involved a 50/50 split

between manual and computer effort. As each individual software-node sub-tree was

analyzed, an equal amount of time was spent looking through associated source code files.

This phase produced the actual listing of possible faulty source code lines and was the

culmination of the entire methodology process.

45

46

V. CONCLUSIONS

A. CONCLUSIONS

This thesis presented a sample methodology that demonstrated that Ada-based

software control systems can be efficiently and effectively analyzed in a practical time

frame through the use of existing automated and semi-automated software safety tools and

methods. The semi-automated tools ACTT, FTE and FI were used in combination with

standard software fault tree analysis techniques to provide accurate and meaningful

software safety analysis data on a real world, currently developing software project.

Through this methodology implementation, it was found that numerous "manual" holes

existed in the current analysis process. Specifically, the need for an "expert systems"

approach to executing the system design research step, hazards identification step and the

preliminary hazard analysis step was identified. Current levels of "expert systems"

technology makes this a steep task to fill. This coupled with the "industry-expected" need

for a human safety analyst, shows a trend towards development of automated tools to assist,

not replace, the analyst. Nevertheless, any effort towards development of a fully automated

process will require substantial resources be directed towards the improvement of these

analysis tools and expert systems.

B. RECOMMENDATIONS AND FUTURE WORK

Software analysis of safety-critical control-systems is an ongoing, evolutionary

process. As more control systems are developed, more methods to analyze and process

them will be developed. It is essential to disseminate, throughout the software analysis

community, the lessons learned from those developmental processes to help promote future

methodology development. The methodology presented here is dependent upon the use of

the semi-automated tools, ACTT, FTE and FT. These tools and the developed methods to

use them should be made available for further research and development.

47

These tools have demonstrated their usefulness in providing efficient software

safety analysis capabilities. ACTT provides excellent software analysis data but could be

improved upon as follows. First, a graphical user interface front-end will eventually

become essential for wide spread use. Second, additional ACTT generated data output files

would be useful such as a data session file and a generated node summary file. The FI tool

gives the analyst a unique capability to manipulate and isolate fault trees. FI could be

improved upon by adding additional functionality such as a Delete Sub-Tree and a Move

Child/Sibling option. FTE could be improved by adding a zoom in/zoom out option, a

thumbnail tree viewing option, an increased viewing window size and some sort of "pretty-

tree" printing capability. A logical extension of these tools could be the combining of all

three into one "Software Safety Analysis Tool Suite." This would provide the best utility

of all and give the analyst one complete tool package.

Continuing research and development of semi-automated and automated software

analysis tools is essential in achieving a useful, standardized software analysis

methodology. Though achieving a completely automated process in the near term seems

unlikely to this author, continued work in each area of safety analysis will produce the

stepping stones towards that desirable goal.

48

APPENDIX A. SOFTWARE FAULT TREE SYMBOLOGY

RECTANGLE
(Decomposable Event)

DIAMOND
(Non-decomposed Event)

TRIANGLE
(Link to Other Tree)

ELLIPSE
(System State Permitting a Fault)

CIRCLE
(Elementary Event)

HOUSE
(Normally Occurring System Event)

AND GATE OR GATE

Figure 14: Software Fault Tree Symbols

49

50

APPENDIX B. MESA CONTROL CSCI PHA RESULTS

MESA Software Development Plan

SDP
Para Ref

SDP Requirement Possible Hazard Possible Result Severity

1.2.2 Control CSCI
moves and posi-
tions the simula-
tion hardware

Erroneous control
signals are gener-
ated and sent to the
system hardware

Hardware/Personnel
damage/injury

High

1.2.2 Control CSCI pro-
vides operator
interface to control
progress of simula-
tion

Operator directs
unsafe or incorrect
inputs to Control
CSCI

Hardware/Personnel
damage/injury

High

1.2.2 Control CSCI logs
operations for
future reference

Control develops
erroneous log
entries

Log analysis generates
future hazardous pro-
cedures/actions

High

3.3 Operator has com-
plete override capa-
bility over Control
CSCI

Operator errone-
ously overrides
Control CSCI

Hardware/Personnel
damage/injury

High

3.3 Operator must
determine the track
in the measure-
ment zone is free of
obstructions

Operator misjudges
obstructions in free
zone

Hardware/Personnel
damage/injury

High

3.3 GUI provides audi-
ble and visual
warnings to opera-
tor on impending
danger

GUI warning sig-
nals fail

Hardware/Personnel
damage/injury

High

3.3 All critical data
transmissions use
checksums

Checksums errone-
ously calculated

Erroneous control sig-
nals generated - system
failure, Hardware/Per-
sonnel damage/injury

Low to
High

Table 10: PHA on Software Development Plan

51

MESA Software Requirements Specification

SRS
Para Ref

SRS Requirement Possible Hazard Possible Result Severity

3.1.1 Control CSCI shall Engagement gener- Erroneous data collec- Med
provide for the ation computer tion, undesired engage- to
input of data files maintains incorrect ment parameters High
from Engagement data files resulting in hardware
Generation damage

3.1.2 Control CSCI shall DAC maintains Damage to sensor, High
pass series and run incorrect parameters erroneous data collec-
parameters to DAC tion

3.2 Control CSCI shall Hardware devices Damage to hardware, High
send Start Motion, continue to operate/ loss of data
Stop Motion, Emer- remain still against
gency Stop Motion operator's request
commands within
given time limits

3.2.2.a.2 Control shall Inconsistent and/or Erroneous data collec- High
-4 update informa- erroneous data tion, hardware devices

tion, the State Table maintained in Sys- incorrectly maneu-
and the system sta- tem. vered resulting in dam-
tus/positions at the age.
System Update
Rate

3.2.2.3.a Control CSCI shall HWCI computers Damage to hardware, High
download execut- fail to execute loss of data
able software to required program
the ST, OTS, and
Sphere Computers
when they power
up

3.2.2.3.b Control CSCI shall Erroneous run Unanticipated hard- High
increment the run parameters loaded ware motion and dam-
number after each age, erroneous data
engagement collected

Table 11: PHA on Software Requirements Specification

52

SRS
Para Ref SRS Requirement Possible Hazard Possible Result Severity

3.2.2.3.C Given a GO signal Failure to start Damage to hardware High
from operator, Con- motion of devices could result from colli-
trol shall start could lead to a colli- sion, erroneous data
motion of all sion situation. collected
related devices not
already in motion
and reset the retry
counter and the
motion-fault timer
for those devices

3.2.2.3.d Given a STOP sig- Failure to stop Damage to hardware High
nal from operator, motion of devices could result from colli-
Control shall stop could lead to a colli- sion, erroneous data
motion of all sion situation. collected.
related devices

3.2.2.3.1 Control shall reject IRS interface IRS interface incom- High
.l.h sensor beam run

mode and Colli-
sion Risk combina-
tions that are
checked in the
given table.

incompatibility patibility

3.2.2.3.1 Control shall not OTS control line OTS control line fail- High
.3.a permit a move that tension limit ure, erratic OTS

exceeds the control exceeded motion, hardware col-
line tension limits lision and damage
for the specified
Target and Sphere
control line in auto-
matic mode.

3.2.2.3.1 Control shall calcu- Erroneous danger Target and ST colli- High
,3.d late Target danger

zone
zone calculated sion/damage

3.2.2.3.1 Control shall calcu- Erroneous danger Target and ST colli- High
.3.1.a.l late the ST danger

zone
zone calculated sion/damage

Table 11: PHA on Software Requirements Specification

53

SRS
Para Ref

SRS Requirement Possible Hazard Possible Result Severity

3.2.2.3.1 Control shall pre- Target and ST dan- Target and ST colli- High
.3.1.a.2 vent Target danger

zone from inter-
secting with ST
danger zone in
Automatic mode

ger zones overlap sion/damage

3.2.2.3.1 Control shall calcu- Erroneous Collision or near miss High
Al.e late the "Check Collision_Risk cal- of ST and Target, hard-

Collision" point culated ware damage

3.2.2.3.1 When operator Erroneous data cal- Collision of ST and High
AA.b.l clicks forward run culated/passed to Target, hardware dam-

(non-collision), HWCFs age
Control shall exe-
cute operations for Parameters out of Collision of ST and/or
a forward run: limits condition Target with MESA
l)Move ST to start position ST in target facility structure
point 2)Calculate danger zone
ST motion profiles
3)Send run parame-
ters to DAC ^Pro-
gram SPG 5)Start
ST motion 6)Send
idle to DAC when
ST stops

Table 11: PHA on Software Requirements Specification

54

SRS
Para Ref SRS Requirement Possible Hazard Possible Result Severity

3.2.2.3.1 When operator Erroneous data cal- Collision of ST and High
AA.b.2 clicks reverse run culated/passed to Target, hardware dam-

(non-collision), HWCFs age
Control shall exe- Collision of ST and/or
cute operations for Parameters out of Target with MESA
a reverse run: limits condition facility structure
l)Move ST to start position ST in target
point 2)Calculate danger zone
ST motion profiles
3)Send run parame-
ters to DAC ^Pro-
gram SPG 5)Start
ST motion 6)Send
idle to DAC when
ST stops

3.2.2.3.1 When operator Erroneous data cal- Collision of ST and High
.4.4.b.3 clicks reverse run culated/passed to Target, hardware dam-

(collision), Control HWCFs age
shall execute opera- Collision of ST and/or
tions for a reverse Parameters out of Target with MESA
run (collision): limits condition facility structure
l)Determine position ST in target
AtoD_Start 2)Cal- danger zone
culate ST motion
profiles 3)Send run
parameters to DAC
4)Program SPG
5)Wait 100ms
6)Start ST motion
7)SendidletoDAC
when ST stops

Table 11: PHA on Software Requirements Specification

55

SRS
Para Ref SRS Requirement Possible Hazard Possible Result Severity

3.2.2.3.1 Control shall per- Erroneous Run- Erroneous run-time High
.4.4.C.3 form the following

operations at the
end of a data run:

time Log entry

Erroneous next step

reports, unneeded pro-
cedural changes made

l)Provide operator set: Next engage- Collision of ST and
a list to choose ment vice Next tra- Target, hardware dam-
Observed Condi- jectory and vice age on next run
tions 2)For out-of- versa.
tolerance (OOT)
conditions, accept
run sets Set
Engagement 3)For
no OOT, set Run
time Log, trajectory
and engagement
info.

3.2.2.3.1 Control shall Erroneous Engage- Induces operator error High
.4.5 retrieve Next

Engagement
ment retrieved causing collision of ST

and/or Target with
MESA facility struc-
ture

3.2.2.3.1 When Next Trajec- Erroneous next tra- Collision of ST and High
.4.7 tory selected, Con- jectory conditions Target with MESA

trol shall get next retrieved facility structure, hard-
trajectory, display ware damage on next
engagement condi- run
tions, set engage-
ment option.

3.2.2.3.1 Control shall gener- Failure to generate Collision of ST and High
.4.8.a.l ate warning mes- warning message, Target with MESA

sage for invalid erroneous trajec- facility structure, hard-
next trajectory. tory conditions used ware damage on next

run

Table 11: PHA on Software Requirements Specification

56

SRS
Para Ref SRS Requirement Possible Hazard Possible Result Severity

3.2.2.3.1 Control shall pass Erroneous read of Collision of ST and High
.4.8.a.2 trajectory number engagement param- Target with MESA

and engagement eters from engage- facility structure, hard-
parameters to GUI. ment file ware damage on next

run

3.2.2.3.2 When EMER Stop motion com- Collision of ST and High
.La STOP pressed, mands erroneously Target with MESA

Control shall or not at all gener- facility structure, hard-
l)Stop all motion ated ware damage on next
2)Generate fault run
log 3)Request and
enter operator com- Personnel injury
ment

3.2.2.3.2 When ABORT Stop motion com- Collision of ST and High
.Lb pressed, Control mands to ST errone- Target with MESA

shall l)Stop ST ously or not at all facility structure, hard-
2)Request and enter generated ware damage on next
operator comment run

3.2.2.3.2 When Hardware Stop motion com- Collision of ST and High
.l.c EMER STOP mands to ST errone- Target with MESA

pressed, Control ously or not at all facility structure, hard-
shall l)Stop all generated ware damage on next
devices 2)Generate run
fault log 3)Request
and enter operator Personnel injury
comment

3.2.2.3.2 Control shall stop Stop motion com- Collision of ST and High
.2.b device motion mands to ST errone- Target with MESA

when software limit ously or not at all facility structure, hard-
exceeded. generated ware damage on next

run

Personnel injury

Table 11: PHA on Software Requirements Specification

57

SRS
Para Ref

SRS Requirement Possible Hazard Possible Result Severity

3.2.2.3.2
.2.c

Control shall not
command ST to
speeds in excess of
ST speed zones.

Erroneous speed
commands gener-
ated

Collision of ST and
Target with MESA
facility structure, hard-
ware damage on next
run

High

3.2.2.3.2
.2.d

When main hoist
software limit
detected, Control
shall l)Stop all
devices in motion
2)Generate fault
log 3)Request and
enter operator com-
ment

Stop motion com-
mands to devices
erroneously or not
at all generated

Collision of ST and
Target with MESA
facility structure, hard-
ware damage on next
run

High

Table 11: PHA on Software Requirements Specification

58

APPENDIX C. GENERATED FAULT TREES AND FAULT
DESCRIPTION LISTINGS

1. Top-Level Specific Hazard Faults

A. Sphere Impacts Arena

B. Sphere Impacts Object Other Than Arena

2. Software Starting Root Node Faults

A. Data error

B. Check Error

C. Algorithm Error

D. Encoder Line Breaks

E. Tracking Error in Software

3. Encoder Line Breaks Analysis Faults

A. Evaluate Node Sub-Tree Faults

• Level One (Root to 264)

• Level Two (264 to 86)

• Level Three (86 to Leaves)

B. Brk Ecdr Node Sub-Tree Faults

• Root

• Node 194

• Node 179

• Node 46

Table 12

Table 13

Figure 15/Table 14

Figure 16/Table 15

Figure 17/Table 16

Figure 18/Table 17

Figure 19/Table 18

Figure 20/Table 19

Figure 21/Table 20

Figure 22/Table 21

Figure 23/Table 22

Figure 24/Table 23

Figure 25/Table 24

Figure 26/Table 25

59

Node Label Fault Description

impact Sphere impacts arena

ctln brk Control line breaks

control Control causes sphere impact

wall near Sphere is close to arena structure

motion Controlled motion causes sphere impact

swfail Software commands motion causing sphere impact

init err Initial position set in software causes erroneous motion

check er Initialization check fails to find data incorrect

data err Wrong initialization data provided to software

value er Undesired movement value generated

algrerr Closed loop position algorithm generates bad values

track er Invalid incremental movement calculation

tr reg er Encoder line tracking not registered in software

ecdr brk Encoder line break causes continued motion

hw fail Hardware Failure produces motion causing sphere impact

Table 12: Sphere Impacts Arena Fault Description Listing

60

Node Label Fault Description

impact Sphere impacts arena

cntrl brk Control line breaks

control Control causes sphere impact

near obj Sphere is close to arena structure

motion Controlled motion causes sphere impact

swfail Software commands motion causing sphere impact

initerr Initial position set in software causes erroneous motion

man hook Manual positioning causes erroneous motion

swerr Initial position set in software causes erroneous motion

data err Wrong initialization data provided to software

check er Initialization data fails to find data incorrect

value er Undesired movement value generated

algr en- Closed loop position algorithm generates bad values

track er Invalid incremental movement calculation

tr reg er Encoder line tracking not registered in software

ecdr brk Encoder line break causes continued motion

hwfail Hardware Failure produces motion causing sphere impact

obj mot Object motion other than sphere causes impact

target Target motion causes impact

St Sensor transport motion causes impact

sensor Actual sensor motion causes impact

other Other object motion causes impact

Table 13: Sphere Impacts Object Other Than Arena Fault Description Listing

61

data err

Figure 15: Data Error Fault Tree

Figure 16: Check Error Fault Tree

62

Node Label Fault Description

data err Wrong initialization data provided to software

oper err Operator manually inputs erroneous initialization data

sw error Software generates erroneous initialization data

init_ecdr Initialize_Encoders_History procedure in Remote_sphere.a
causes fault

initl Initialized procedure in Remote_sphere.a causes fault

init2 Initialize_2 procedure in Remote_sphere.a causes fault

init_eng Initial_Engagement_Conditions procedure in
Remote_sphere.a causes fault

go Go procedure in Remote_sphere.a causes fault

Table 14: Data Error Fault Description Listing

Node Label Fault Description

check er Initialization check fails to find data incorrect

init_ecdr Initialize_Encoders_History procedure in
Fault_monitor_s.a causes fault

init2 Initialize_2 procedure in Remote_sphere.a causes fault

initl Initialized procedure in Remote_sphere.a causes fault

init_eng Initial_Engagement_Conditions procedure in
Remote_sphere.a causes fault

go Go procedure in Remote_sphere.a causes fault

Table 15: Check Error Fault Description Listing

63

Figure 17: Algorithm Error Fault Tree

64

Node Label Fault Description

algr err Closed loop position algorithm generates bad values

calc tol Calc_Within_Tolerance procedure causes fault

calc err Calc_Errors procedure causes fault

calc step Calc_Steps procedure causes fault

step null Steps_Or_Null procedure causes fault

move step Move_Steppers procedure causes fault

spread en- Spread_Of_Errors_During_Settle_And_Hold_Times
procedure causes fault

Table 16: Algorithm Error Fault Description Listing

65

ecdr brk

Figure 18: Encoder Line Break Error Fault Tree

66

Node Label Fault Description

ecdr brk Encoder line break causes continued motion

hw break Hardware causes encoder line to break

calcerr Software generates erroneous data causing encoder line
to break

ecdr off Encoders_Off procedure in Digital_output_s.a causes
fault

unfreeze Unfreeze_Encoder_Readings procedure in
Digital_output_s.a causes fault

freeze Freeze_Encoder_Readings procedure in
Digital_output_s.a causes fault

brk ecdr Broken_Encoder_Line procedure in
Fault_Monitor_s.a causes fault

evaluate Evaluate procedure in Evaluate_s.a causes fault

ecdr on Encoders_On procedure in Digital_output_s.a causes
fault

ecdr down Encoders_Down procedure in Digital_output_s.a
causes fault

ecdr up EncodersJUp procedure in Digital_output_s.a causes
fault

Table 17: Encoder Line Break Error Fault Description Listing

67

Figure 19: Encoder Line Tracking Error Fault Tree

68

Node Label Fault Description

tr reg er Encoder line tracking not registered in software

get cntr Get_Control_Words procedure in Digital_input_s.a causes fault

ecdrup Encoders_Up procedure in Digital_output_s.a causes fault

ecdr down Encoders_Down procedure in Digital_output_s.a causes fault

ecdron Encoders_On procedure in Digital_output_s.a causes fault

ecdr off Encoders_Off procedure in Digital_output_s.a causes fault

unfreeze Unfreeze_Encoder_Readings procedure in Digital_output_s.a
causes fault

freeze Freeze_Encoder_Readings procedure in Digital_output_s.a
causes fault

get vals GetJValues procedure in Encoders_b- a causes fault

evaluate Evaluate procedure in Evaluate_s.a causes fault

check mal Check_For_Malfunction procedure in Fault_monitor_s.a causes
fault

hw reset HW_Reset procedure in Hw_reset.a causes fault

move ecdr Move_Encoder_Line procedure in Remote_sphere.a causes fault

set stat Set_State procedure in Remote_sphere.a causes fault

stop mot Stop_Motion procedure in Remote_sphere.a causes fault

stop line Stop_All_Lines procedure in Remote_sphere.a causes fault

Table 18: Encoder Line Tracking Error Fault Description Listing

69

Figure 20: Evaluate Sub-Tree Level One

70

Node Label Fault Description

evaluate Sequence of statements causes Fault

539 Last statement causes Fault

535 If statement causes Fault

538 Previous statements causes Fault

536 Last Statement did not mask Fault

537 Sequence prior to last causes Fault

507 Sequence of statements causes Fault

506 Last statement causes Fault

502 If statement causes Fault

505 Previous statements causes Fault

503 Last Statement did not mask Fault

504 Sequence prior to last causes Fault

475 Sequence of statements causes Fault

474 Last statement causes Fault

469 Procedure call causes Fault

473 Previous statements causes Fault

471 Last Statement did not mask Fault

472 Sequence prior to last causes Fault

455 Sequence of statements causes Fault

454 Last statement causes Fault

450 If statement causes Fault

453 Previous statements causes Fault

451 Last Statement did not mask Fault

Table 19: Evaluate Sub-Tree Level One Fault Description Listing

71

Node Label Fault Description

452 Sequence prior to last causes Fault

422 Sequence of statements causes Fault

421 Last statement causes Fault

414 Assignment Statement causes Fault

420 Previous statements causes Fault

418 Last Statement did not mask Fault

419 Sequence prior to last causes Fault

409 Sequence of statements causes Fault

408 Last statement causes Fault

403 Procedure call causes Fault

407 Previous statements causes Fault

405 Last Statement did not mask Fault

406 Sequence prior to last causes Fault

390 Sequence of statements causes Fault

389 Last statement causes Fault

385 Procedure call causes Fault

388 Previous statements causes Fault

386 Last Statement did not mask Fault

387 Sequence prior to last causes Fault

377 Sequence of statements causes Fault

376 Last statement causes Fault

367 Assignment Statement causes Fault

375 Previous statements causes Fault

373 Last Statement did not mask Fault

374 Sequence prior to last causes Fault

Table 19: Evaluate Sub-Tree Level One Fault Description Listing

72

Node Label Fault Description

359 Sequence of statements causes Fault

358 Last statement causes Fault

349 Assignment Statement causes Fault

357 Previous statements causes Fault

355 Last Statement did not mask Fault

356 Sequence prior to last causes Fault

339 Sequence of statements causes Fault

338 Last statement causes Fault

329 Assignment Statement causes Fault

337 Previous statements causes Fault

335 Last Statement did not mask Fault

336 Sequence prior to last causes Fault

319 Sequence of statements causes Fault

318 Last statement causes Fault

309 Assignment Statement causes Fault

317 Previous statements causes Fault

315 Last Statement did not mask Fault

316 Sequence prior to last causes Fault

301 Sequence of statements causes Fault

300 Last statement causes Fault

295 Procedure call causes Fault

299 Previous statements causes Fault

297 Last Statement did not mask Fault

298 Sequence prior to last causes Fault

280 Sequence of statements causes Fault

Table 19: Evaluate Sub-Tree Level One Fault Description Listing

73

Node Label Fault Description

279 Last statement causes Fault

270 Assignment Statement causes Fault

278 Previous statements causes Fault

276 Last Statement did not mask Fault

277 Sequence prior to last causes Fault

264 Sequence of statements causes Fault

Table 19: Evaluate Sub-Tree Level One Fault Description Listing

74

Figure 21: Evaluate Sub-Tree Level Two

75

Node Label Fault Description

264 Sequence of statements causes Fault

263 Last statement causes Fault

259 Procedure call causes Fault

262 Previous statements causes Fault

260 Last Statement did not mask Fault

261 Sequence prior to last causes Fault

250 Sequence of statements causes Fault

249 Last statement causes Fault

244 Procedure call causes Fault

248 Previous statements causes Fault

246 Last Statement did not mask Fault

247 Sequence prior to last causes Fault

231 Sequence of statements causes Fault

230 Last statement causes Fault

225 Procedure call causes Fault

229 Previous statements causes Fault

227 Last Statement did not mask Fault

228 Sequence prior to last causes Fault

209 Sequence of statements causes Fault

208 Last statement causes Fault

203 Procedure call causes Fault

207 Previous statements causes Fault

205 Last Statement did not mask Fault

Table 20: Evaluate Sub-Tree Level Two Fault Description Listing

76

Node Label Fault Description

206 Sequence prior to last causes Fault

187 Sequence of statements causes Fault

186 Last statement causes Fault

182 Procedure call causes Fault

185 Previous statements causes Fault

183 Last Statement did not mask Fault

184 Sequence prior to last causes Fault

174 Sequence of statements causes Fault

173 Last statement causes Fault

169 If statement causes Fault

165 Evaluation of condition causes Fault

168 Condition true and statements causes Fault

166 If condition true

167 Then statements causes Fault

159 Sequence of statements causes Fault

158 Last statement causes Fault

154 If statement causes Fault

157 Previous statements causes Fault

155 Last Statement did not mask Fault

156 Sequence prior to last causes Fault

164 Sequence of statements causes Fault

163 Last statement causes Fault

86 If statement causes Fault

162 Previous statements causes Fault

172 Previous statements causes Fault

Table 20: Evaluate Sub-Tree Level Two Fault Description Listing

77

Figure 22: Evaluate Sub-Tree Level Three

78

Node Label Fault Description

86 If statement causes Fault

82 Evaluation of condition causes Fault

85 Condition true and statements causes Fault

83 If condition true

84 Then statements causes Fault

54 Sequence of statements causes Fault

53 Last statement causes Fault

44 Assignment Statement causes Fault

52 Previous statements causes Fault

50 Last Statement did not mask Fault

51 Sequence prior to last causes Fault

59 Sequence of statements causes Fault

58 Last statement causes Fault

40 Procedure call causes Fault

37 Procedure elaboration causes Fault

38 Procedure body causes Fault

36 Broken_Encoder_Line

39 Procedure not found on table

57 Previous statements causes Fault

79 ELSE part causes Fault

80 Action by other task on variable causes Fault

Table 21: Evaluate Sub-Tree Level Three Fault Description Listing

79

Figure 23: Brk Ecdr Root Sub-Tree

80

Node Label Fault Description

brk ecdr Sequence of statements causes Fault

235 Last statement causes Fault

223 Loop Statement causes Fault

224 Loop never executed

231 Loop condition evaluation causes Fault

229 Nth Iteration causes Fault

221 Sequence of statements causes Fault

220 Last statement causes Fault

216 If statement causes Fault

212 Evaluation of condition causes Fault

215 Condition true and statements causes Fault

213 If condition true

214 Then statements causes Fault

204 Sequence of statements causes Fault

203 Last statement causes Fault

194 Assignment statement causes fault

202 Previous statements causes Fault

200 Last Statement did not mask Fault

201 Sequence prior to last causes Fault

184 Sequence of statements causes Fault

183 Last statement causes Fault

179 If statement causes fault

182 Previous statements causes Fault

Table 22: Brk Ecdr Root Sub-Tree Fault Description Listing

81

Node Label Fault Description

180 Last Statement did not mask Fault

181 Sequence prior to last causes Fault

209 Sequence of statements causes Fault

208 Last statement causes Fault

46 Assignment Statement causes Fault

207 Previous statements causes Fault

210 Action by other task on variable causes Fault

219 Previous statements causes Fault

228 Condition true past n-1

234 Previous statements causes Fault

Table 22: Brk Ecdr Root Sub-Tree Fault Description Listing

82

Figure 24: Brk Ecdr Node 194 Sub-Tree

83

Node Label Fault Description

194 Assignment Statement causes Fault

197 Change in values causes Fault

198 Exception causes Fault

199 Operand Evaluation causes Fault

188 Indexed Component causes Fault

185 Encoders_3000ms_Ago

187 Relation causes Fault

186 Line_Number

193 Relation causes Fault

192 Indexed Component causes Fault

189 Encoders_Current

191 Relation causes Fault

190 Line_Number

195 Action by other task on variable causes Fault

Table 23: Brk Ecdr Node 194 Sub-Tree Fault Description Listing

84

rv. co
U) CO

ID to

o

en
to

Figure 25: Brk Ecdr Node 179 Sub-Tree

85

Node Label Fault Description

179 If statement causes Fault

175 Evaluation of condition causes Fault

178 Condition true and statements causes Fault

176 If condition true

177 Then statements causes Fault

169 Sequence of statements causes Fault

168 Last statement causes Fault

167 Previous statements causes Fault

165 Last Statement did not mask Fault

166 Sequence prior to last causes Fault

161 Sequence of statements causes Fault

160 Last statement causes Fault

155 Procedure call causes Fault

159 Previous statements causes Fault

157 Last Statement did not mask Fault

158 Sequence prior to last causes Fault

144 Sequence of statements causes Fault

143 Last statement causes Fault

139 If statement causes Fault

142 Previous statements causes Fault

140 Last Statement did not mask Fault

141 Sequence prior to last causes Fault

84 Sequence of statements causes Fault

Table 24: Brk Ecdr Node 179 Sub-Tree Fault Description Listing

86

Node Label Fault Description

83 Last statement causes Fault

79 Procedure call causes Fault

76 Procedure elaboration causes Fault

77 Procedure body causes Fault

75 Stop_Motion

78 Procedure not found on table

82 Previous statements causes Fault

80 Last Statement did not mask Fault

81 Sequence prior to last causes Fault

174 Sequence of statements causes Fault

173 Last statement causes Fault

73 Procedure call causes Fault

69 Procedure elaboration causes Fault

70 Procedure body causes Fault

71 Off

72 Procedure not found on table

74 Parameter evaluation causes Fault

65 Relation causes Fault

64 Line_Number

67 Action by other task causes Fault

68 Line_Number

172 Previous statements causes Fault

Table 24: Brk Ecdr Node 179 Sub-Tree Fault Description Listing

87

Figure 26: Brk Ecdr Node 46 Sub-Tree

Node Label Fault Description

46 Assignment Statement causes Fault

49 Change in values causes Fault

50 Exception causes Fault

51 Operand Evaluation causes Fault

23 Indexed Component causes Fault

20 Encoder_Speed

22 Relation causes Fault

21 Line_Number

45 Relation causes Fault

44 Indexed Component causes Fault

25 Counts_Unsigned

43 Relation causes Fault

42 Division or Multiplication causes Fault

39 Indexed Component causes Fault

27 Real

38 Relation causes Fault

37 Addition or Subtraction causes Fault

31 Indexed Component causes Fault

28 Encoders_3000ms_Ago

30 Relation causes Fault

29 Line_Number

32 Subtraction causes Fault

36 Indexed Component causes Fault

Table 25: Brk Ecdr Node 46 Sub-Tree Fault Description Listing

89

Node Label Fault Description

33 Encoders_Current

35 Relation causes Fault

34 Line_Number

41 Enc_Line_Error_Time

40 Division By Zero causes Fault

47 Action by other task on variable causes Fault

Table 25: Brk Ecdr Node 46 Sub-Tree Fault Description Listing

90

LIST OF REFERENCES

1. Leveson, Nancy G., "Software Safety: Why, What and How", ACM Computing
Surveys, Volume. 18, No.2, pp. 125-163, June 1986.

2. Reid Jr., William S., Software Fault Tree Analysis of Concurrent Ada Processes,
M.S. Thesis, Naval Postgraduate School, Monterey, CA, September 1994.

3. Kopetz, H., "Software Reliability", Springer-Verlag New York Inc., 1979.

4. Heimerdinger, W. and Weinstock, C, "A Conceptual Framework for System Fault
Tolerance", Technical Report CMU/SEI-92-TR-33 Carnegie Mellon University,
October 1992.

5. Nelson, V, "Fault-Tolerant Computing: Fundamental Concepts", IEEE Computer,
Volume. 23, No.7, pp. 19-25, July 1990.

6. Anderson, T. and Lee, P., "Fault Tolerant Principles and Practices", Princeton Hall
Books, 1981.

7. Casey, Steven, "Set Phasers on Stun and Other Tales of Design, Technology and
Human Error", Aegean Publishing Company, 1993.

8. Place, Patrick R.H., and Kang, Kyo C, "Safety-Critical Software: Status Report and
Annotated Bibliography", Technical Report CMU/SEI-92-TR-5 Carnegie Mellon
University, June 1993.

9. Ordonio, Robert R., An Automated Tool to Facilitate Code Translation for Software
Fault Tree Analysis, M.S. Thesis, Naval Postgraduate School, Monterey, CA,
September 1993.

10. Mason, Russell W, Fault Isolator Tool for Software Fault Tree Analysis, M.S.
Thesis, Naval Postgraduate School, Monterey, CA, March 1995.

11. Leveson, Nancy G. and Stolzy, J.L., "Safety Analysis Using Petri Nets", IEEE
Transactions on Software Engineering, Volume SE-13, No.3, pp.386-397, March
1987.

12. Harel, David, "Statecharts: A Visual Formalism for Complex Systems", Science of
Computer Programming Paper, July 1986.

13. Noble, W. B., "Developing Safe Software for Critical Airborne Applications",
Proceedings of the IEEE 6th Digital Avionics Systems Conference, December 1984,
Baltimore, MD.

91

14. MESA Development Team, Software Development Plan (SDP) for Missile
Engagement Simulation Arena (MESA) Control Software, Naval Air Warfare
Center Weapons Division, China Lake, CA, August 1993.

15. MESA Development Team, Software Requirements Specification (SRS) for Missile
Engagement Simulation Arena (MESA) Control Software, Naval Air Warfare
Center Weapons Division, China Lake, CA, August 1993.

16. Mclntee, J. W Jr., "Fault Tree Techniques as Applied to Software (Soft Tree)",
Technical Report, United States Air Force, March 1983.

17. Leveson, Nancy G. and Harvey, P. R., "Analyzing Software Safety", IEEE
Transactions on Software Engineering, Volume SE-9, No.5, pp.569-579, September
1983.

18. Taylor, J. R., "Fault Tree and Cause Consequence Analysis for Control Software
Validation", RISO National Laboratory, DK-4000 Doskilde, Denmark, pp. 5-17,
January 1982.

19. Cha, Stephen S., "A Safety Critical Software Design and Verification Technique",
Ph.D. Dissertation, Technical Report 91-62, University of California, Irvine, 1991.

92

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 013
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Professor Timothy J. Shimeall, Code CS/Sm
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Lt. Col. David A. Gaitros
AFCES/CEOA
139 Barnes Drive, Suite 1
TyndallAFB,FL 32403-5319

6. Dr. Robert M. Winter...
Physics Department
Shippensburg University
Shippensburg, PA 17257

7. Mrs. Therese F. Giles
Software Project Manager
1490 West Lakeland Drive
Mechanicsville, MD 20659

8. Mr. Robert Parchetta
71 Blue Spruce Lane
Ballston Lake, NY 12019

9. Mr. Robert Westbrook
Naval Air Warfare Center - Weapons
Code 45F000D
China Lake, CA 93555-6001

93

10. Mr. Kenneth Wetzel
Naval Air Warfare Center - Weapons
Code471310D
China Lake, CA 93555-6001

11. Mr. Tom Roseman
Naval Air Warfare Center - Weapons
Code471310D
China Lake, CA 93555-6001

12. CDR Michael J. Holden
Computer Science Department (Code CS/Hm)
Naval Postgraduate School
Monterey, CA 93943

13. CDR Mark Barber
Computer Science Department (Code CS/Bm)
Naval Postgraduate School
Monterey, CA 93943

14. Mrs. Mary C. Winter .
6700 NE 182nd Street
Seattle, WA 98155

15. Dr. Mario Ghezzo
General Electric Research and Development
1 River Road
Building 40-4
Schenectady, NY 12345

16. LCDR Mathias W. Winter
121 East Burd Street
Shippensburg, PA 17257

94

